Arnold diffusion for nearly integrable Hamiltonian systems

被引:0
|
作者
Chong-Qing Cheng
Jinxin Xue
机构
[1] Nanjing Normal University,School of Mathematical Sciences
[2] Tsinghua University,Department of Mathematical Sciences
来源
Science China Mathematics | 2023年 / 66卷
关键词
Arnold diffusion; normal form; Aubry set; normally hyperbolic invariant cylinder; cohomological equivalence; ladder; 37J25; 37J40; 37J51;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that the nearly integrable system of the form H(x,y)=h(y)+εP(x,y),x∈Tn,y∈ℝn,n⩾3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(x,y) = h(y) + \varepsilon P(x,y),\,\,\,\,\,\,\,x \in {\mathbb{T}^n},\,\,\,\,\,\,\,\,y \in {\mathbb{R}^n},\,\,\,\,\,\,n\,\geqslant\,3$$\end{document} admits orbits that pass through any finitely many prescribed small balls on the same energy level H−1(E) provided that E > min h, if h is convex, and εP is typical. This settles the Arnold diffusion conjecture for convex systems in the smooth category. We also prove the counterpart of Arnold diffusion for the Riemannian metric perturbation of the flat torus.
引用
收藏
页码:1649 / 1712
页数:63
相关论文
共 50 条