Exponential lower bounds of lattice counts by vertical sum and 2-sum

被引:0
|
作者
Jukka Kohonen
机构
[1] University of Helsinki,Department of Computer Science
来源
Algebra universalis | 2019年 / 80卷
关键词
Modular lattices; Semimodular lattices; Vertical sum; Vertical 2-sum; Counting; 05C30; 06C05; 06C10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding lower bounds on the number of unlabeled n-element lattices in some lattice family. We show that if the family is closed under vertical sum, exponential lower bounds can be obtained from vertical sums of small lattices whose numbers are known. We demonstrate this approach by establishing that the number of modular lattices is at least 2.2726n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.2726^n$$\end{document} for n large enough. We also present an analogous method for finding lower bounds on the number of vertically indecomposable lattices in some family. For this purpose we define a new kind of sum, the vertical 2-sum, which combines lattices at two common elements. As an application we prove that the numbers of vertically indecomposable modular and semimodular lattices are at least 2.1562n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.1562^n$$\end{document} and 2.6797n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.6797^n$$\end{document} for n large enough.
引用
收藏
相关论文
共 50 条
  • [41] Lower bounds for the sum of small-size algebraic branching programs
    Bhargav, C.S.
    Dwivedi, Prateek
    Saxena, Nitin
    Theoretical Computer Science, 2025, 1041
  • [42] Sum-of-Squares Lower Bounds for Densest k-Subgraph
    Jones, Chris
    Potechin, Aaron
    Rajendran, Goutham
    Xu, Jeff
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 84 - 95
  • [43] Explicit Lower Bounds Against Ω(n)-Rounds of Sum-of-Squares
    Hopkins, Max
    Lin, Ting-Chun
    2022 IEEE 63RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2022, : 662 - 673
  • [44] Lower Bounds for the Sum of Small-Size Algebraic Branching Programs
    Bhargav, C. S.
    Dwivedi, Prateek
    Saxena, Nitin
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2024, 2024, 14637 : 355 - 366
  • [45] SETH-based Lower Bounds for Subset Sum and Bicriteria Path
    Abboud, Amir
    Bringmann, Karl
    Hermelin, Danny
    Shabtay, Dvir
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (01)
  • [46] Sharp Lower Bounds of the Sum-Connectivity Index of Unicyclic Graphs
    Atapour, Maryam
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [47] Tight Sum-of-squares Lower Bounds for Binary Polynomial2 Optimization Problems
    Kurpisz, Adam
    Leppanen, Samuli
    Mastrolilli, Monaldo
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2024, 16 (01)
  • [48] Lifting Sum-of-Squares Lower Bounds: Degree-2 to Degree-4
    Mohanty, Sidhanth
    Raghavendra, Prasad
    Xu, Jeff
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 840 - 853
  • [49] A MULTIPLE EXPONENTIAL SUM TO MODULUS P2
    HEATHBROWN, DR
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1985, 28 (04): : 394 - 396
  • [50] Lower Complexity Bounds of Finite-Sum Optimization Problems: The Results and Construction
    Han, Yuze
    Xie, Guangzeng
    Zhang, Zhihua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25