Exponential lower bounds of lattice counts by vertical sum and 2-sum

被引:0
|
作者
Jukka Kohonen
机构
[1] University of Helsinki,Department of Computer Science
来源
Algebra universalis | 2019年 / 80卷
关键词
Modular lattices; Semimodular lattices; Vertical sum; Vertical 2-sum; Counting; 05C30; 06C05; 06C10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding lower bounds on the number of unlabeled n-element lattices in some lattice family. We show that if the family is closed under vertical sum, exponential lower bounds can be obtained from vertical sums of small lattices whose numbers are known. We demonstrate this approach by establishing that the number of modular lattices is at least 2.2726n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.2726^n$$\end{document} for n large enough. We also present an analogous method for finding lower bounds on the number of vertically indecomposable lattices in some family. For this purpose we define a new kind of sum, the vertical 2-sum, which combines lattices at two common elements. As an application we prove that the numbers of vertically indecomposable modular and semimodular lattices are at least 2.1562n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.1562^n$$\end{document} and 2.6797n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.6797^n$$\end{document} for n large enough.
引用
收藏
相关论文
共 50 条
  • [31] Sharp lower bounds on the sum-connectivity index of trees
    Alyar, S.
    Khoeilar, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (05)
  • [32] UPPER AND LOWER BOUNDS TO QUANTUM-MECHANICAL SUM RULES
    WEINHOLD, F
    JOURNAL OF PHYSICS PART A GENERAL, 1968, 1 (06): : 655 - &
  • [33] Lower Bounds for Smooth Nonconvex Finite-Sum Optimization
    Zhou, Dongruo
    Gu, Quanquan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [34] Sum-of-squares hierarchy lower bounds for symmetric formulations
    Adam Kurpisz
    Samuli Leppänen
    Monaldo Mastrolilli
    Mathematical Programming, 2020, 182 : 369 - 397
  • [35] Tight upper and lower bounds for the reciprocal sum of Proth primes
    Bertalan Borsos
    Attila Kovács
    Norbert Tihanyi
    The Ramanujan Journal, 2022, 59 : 181 - 198
  • [36] Sum-of-squares hierarchy lower bounds for symmetric formulations
    Kurpisz, Adam
    Leppanen, Samuli
    Mastrolilli, Monaldo
    MATHEMATICAL PROGRAMMING, 2020, 182 (1-2) : 369 - 397
  • [37] Sum-of-Squares Hierarchy Lower Bounds for Symmetric Formulations
    Kurpisz, Adam
    Leppaenen, Samuli
    Mastrolilli, Monaldo
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 362 - 374
  • [38] UPPER AND LOWER BOUNDS ON SECOND-ORDER ENERGY SUM
    GOODISMA.J
    JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (08): : 2707 - &
  • [39] Sum-of-Squares Lower Bounds for Sparse Independent Set
    Jones, Chris
    Potechin, Aaron
    Rajendran, Goutham
    Tulsiani, Madhur
    Xu, Jeff
    2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021), 2022, : 406 - 416
  • [40] SUM OF 2 CLOSED LATTICE IDEALS
    LOTZ, HP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (02) : 389 - 390