Exponential lower bounds of lattice counts by vertical sum and 2-sum

被引:0
|
作者
Jukka Kohonen
机构
[1] University of Helsinki,Department of Computer Science
来源
Algebra universalis | 2019年 / 80卷
关键词
Modular lattices; Semimodular lattices; Vertical sum; Vertical 2-sum; Counting; 05C30; 06C05; 06C10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding lower bounds on the number of unlabeled n-element lattices in some lattice family. We show that if the family is closed under vertical sum, exponential lower bounds can be obtained from vertical sums of small lattices whose numbers are known. We demonstrate this approach by establishing that the number of modular lattices is at least 2.2726n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.2726^n$$\end{document} for n large enough. We also present an analogous method for finding lower bounds on the number of vertically indecomposable lattices in some family. For this purpose we define a new kind of sum, the vertical 2-sum, which combines lattices at two common elements. As an application we prove that the numbers of vertically indecomposable modular and semimodular lattices are at least 2.1562n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.1562^n$$\end{document} and 2.6797n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.6797^n$$\end{document} for n large enough.
引用
收藏
相关论文
共 50 条
  • [21] Lower Bounds for the Perron Root of a Sum of Nonnegative Matrices
    L. Yu. Kolotilina
    Journal of Mathematical Sciences, 2003, 114 (6) : 1780 - 1793
  • [22] Sum of Squares Lower Bounds for Refuting any CSP
    Kothari, Pravesh K.
    Mori, Ryuhei
    O'Donnell, Ryan
    Witmer, David
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 132 - 145
  • [23] LOWER BOUNDS FOR INVERSE SUM INDEG INDEX OF GRAPHS
    Gutman, I.
    Matejic, M.
    Milovanovic, E.
    Milovanovic, I.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (04): : 551 - 562
  • [24] Sum-of-Squares Lower Bounds for Planted Clique
    Meka, Raghu
    Potechin, Aaron
    Wigderson, Avi
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 87 - 96
  • [25] Stronger 3SUM-Indexing Lower Bounds
    Chung, Eldon
    Larsent, Kasper Green
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 444 - 455
  • [26] Sum of Squares Lower Bounds from Pairwise Independence
    Barak, Boaz
    Chan, Siu On
    Kothari, Pravesh K.
    STOC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2015, : 97 - 106
  • [27] Some Lower Bounds of Bandwidth Sum of Graphs with Applications
    Yuan Jinjiang(Department of Mathematics
    应用数学, 1996, (04) : 536 - 538
  • [28] Sum-of-Squares Lower Bounds for Sparse PCA
    Ma, Tengyu
    Wigderson, Avi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [29] Tight upper and lower bounds for the reciprocal sum of Proth primes
    Borsos, Bertalan
    Kovacs, Attila
    Tihanyi, Norbert
    RAMANUJAN JOURNAL, 2022, 59 (01): : 181 - 198
  • [30] Lower bounds for arithmetic networks II: Sum of Betti numbers
    Appl Algebra Eng Commun Comput, 1 (41):