Exponential lower bounds of lattice counts by vertical sum and 2-sum

被引:0
|
作者
Jukka Kohonen
机构
[1] University of Helsinki,Department of Computer Science
来源
Algebra universalis | 2019年 / 80卷
关键词
Modular lattices; Semimodular lattices; Vertical sum; Vertical 2-sum; Counting; 05C30; 06C05; 06C10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of finding lower bounds on the number of unlabeled n-element lattices in some lattice family. We show that if the family is closed under vertical sum, exponential lower bounds can be obtained from vertical sums of small lattices whose numbers are known. We demonstrate this approach by establishing that the number of modular lattices is at least 2.2726n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.2726^n$$\end{document} for n large enough. We also present an analogous method for finding lower bounds on the number of vertically indecomposable lattices in some family. For this purpose we define a new kind of sum, the vertical 2-sum, which combines lattices at two common elements. As an application we prove that the numbers of vertically indecomposable modular and semimodular lattices are at least 2.1562n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.1562^n$$\end{document} and 2.6797n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.6797^n$$\end{document} for n large enough.
引用
收藏
相关论文
共 50 条
  • [1] Exponential lower bounds of lattice counts by vertical sum and 2-sum
    Kohonen, Jukka
    ALGEBRA UNIVERSALIS, 2019, 80 (01)
  • [2] Cartesian Lattice Counting by the Vertical 2-sum
    Kohonen, Jukka
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2022, 39 (01): : 113 - 141
  • [3] Cartesian Lattice Counting by the Vertical 2-sum
    Jukka Kohonen
    Order, 2022, 39 : 113 - 141
  • [4] On the 2-sum in rigidity matroids
    Servatius, Brigitte
    Servatius, Herman
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (06) : 931 - 936
  • [5] On the 2-sum Embedding Conjecture
    Lee, James R.
    Poore, Daniel E.
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 197 - 206
  • [6] Bounds for a spectral exponential sum
    Balkanova, Olga
    Frolenkov, Dmitry
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2019, 99 (02): : 249 - 272
  • [7] A class of rings with the 2-sum property
    M. Tamer Koşan
    Yiqiang Zhou
    Applicable Algebra in Engineering, Communication and Computing, 2021, 32 : 399 - 408
  • [8] A class of rings with the 2-sum property
    Kosan, M. Tamer
    Zhou, Yiqiang
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2021, 32 (03) : 399 - 408
  • [9] Notes on Rings with Strong 2-Sum Property
    Li, Yu
    Su, Huadong
    Tang, Gaohua
    Zhou, Yiqiang
    ALGEBRA COLLOQUIUM, 2020, 27 (04) : 821 - 830
  • [10] Exponential Lower Bounds on the Double Oracle Algorithm in Zero-Sum Games
    Zhang, Brian Hu
    Sandholm, Tuomas
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 3032 - 3039