The annihilating graph of a ring

被引:0
|
作者
Z. Shafiei
M. Maghasedi
F. Heydari
S. Khojasteh
机构
[1] Karaj Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Lahijan Branch,undefined
[4] Islamic Azad University,undefined
来源
Mathematical Sciences | 2018年 / 12卷
关键词
Annihilating graph; Diameter; Girth; Planarity; 05C10; 05C25; 05C40; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}(A)$$\end{document}, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ann}(I){\rm Ann}(J)=0$$\end{document}. For every commutative ring A, we study the diameter and the girth of G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document}. Also, we prove that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a triangle-free graph, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a bipartite graph. Among other results, we show that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a tree, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({{\mathbb {Z}}}_n)$$\end{document} is a complete or a planar graph. Finally, we compute the domination number of G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({\mathbb {Z}}_n)$$\end{document}.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [41] The k-annihilating-ideal hypergraph of commutative ring
    Selvakumar, K.
    Ramanathan, V
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (03) : 241 - 252
  • [42] When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
    Atossa Parsapour
    Khadijeh Ahmad Javaheri
    Czechoslovak Mathematical Journal, 2018, 68 : 19 - 34
  • [43] When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
    Parsapour, Atossa
    Javaheri, Khadijeh Ahmad
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (01) : 19 - 34
  • [44] The Forcing Metric Dimension of a Total Graph of Nonzero Annihilating Ideals
    M. Pazoki
    Ukrainian Mathematical Journal, 2023, 75 : 964 - 971
  • [45] On the Genus of Strong Annihilating-ideal Graph of Commutative Rings
    Nazim, Mohd
    Rehman, Nadeem Ur
    Selvakumar, K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (09)
  • [46] THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS
    Ansari-Toroghy, Habibollah
    Habibi, Shokoufeh
    MATHEMATICAL REPORTS, 2018, 20 (03): : 245 - 262
  • [47] Two-type annihilating systems on the complete and star graph
    Cristali, Irina
    Jiang, Yufeng
    Junge, Matthew
    Kassem, Remy
    Sivakoff, David
    York, Grayson
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 139 : 321 - 342
  • [48] On two extensions of the annihilating-ideal graph of commutative rings
    Nazim, Mohd
    Rehman, Nadeem ur
    Nisar, Junaid
    GEORGIAN MATHEMATICAL JOURNAL, 2023, 30 (06) : 933 - 939
  • [49] The Forcing Metric Dimension of a Total Graph of Nonzero Annihilating Ideals
    Pazoki, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (06) : 964 - 971
  • [50] Some properties of the essential annihilating-ideal graph of commutative rings
    Nazim, Mohd
    Rehman, Nadeem ur
    Mir, Shabir Ahmad
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (04) : 715 - 724