The annihilating graph of a ring

被引:0
|
作者
Z. Shafiei
M. Maghasedi
F. Heydari
S. Khojasteh
机构
[1] Karaj Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Lahijan Branch,undefined
[4] Islamic Azad University,undefined
来源
Mathematical Sciences | 2018年 / 12卷
关键词
Annihilating graph; Diameter; Girth; Planarity; 05C10; 05C25; 05C40; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}(A)$$\end{document}, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ann}(I){\rm Ann}(J)=0$$\end{document}. For every commutative ring A, we study the diameter and the girth of G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document}. Also, we prove that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a triangle-free graph, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a bipartite graph. Among other results, we show that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a tree, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({{\mathbb {Z}}}_n)$$\end{document} is a complete or a planar graph. Finally, we compute the domination number of G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({\mathbb {Z}}_n)$$\end{document}.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [21] Polynomials annihilating the Witt ring
    Ongenae, V
    VanGeel, J
    MATHEMATISCHE NACHRICHTEN, 1997, 185 : 213 - 226
  • [22] Some results on a spanning subgraph of the complement of the annihilating-ideal graph of a commutative reduced ring
    Visweswaran, S.
    Parmar, Anirudhdha
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (01)
  • [23] The Annihilating-Ideal Graph of an Idealization
    M. Ahrari
    Sh. A. Safari Sabet
    B. Amini
    Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 165 - 168
  • [24] CHARACTERIZATION OF ANNIHILATING-IDEAL GRAPH
    Tayade, Pramod
    Surwade, Kamalakar
    Deore, Rajendra
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 42 (02): : 151 - 157
  • [25] The Annihilating-Ideal Graph of an Idealization
    Ahrari, M.
    Sabet, Sh. A. Safari
    Amini, B.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A1): : 165 - 168
  • [26] A GENERALIZATION OF THE ANNIHILATING IDEAL GRAPH FOR MODULES
    Barzegar, Soraya
    Safaeeyan, Saeed
    Momtahan, Ehsan
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 65 (01): : 47 - 65
  • [27] The annihilating-ideal graph of a lattice
    Afkhami, Mojgan
    Bahrami, Solmaz
    Khashyarmanesh, Kazem
    Shahsavar, Faeze
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (01) : 1 - 7
  • [28] Random walk of annihilating particles on the ring
    Grigoriev, SY
    Priezzhev, VB
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 146 (03) : 411 - 420
  • [29] Random walk of annihilating particles on the ring
    S. Yu. Grigoriev
    V. B. Priezzhev
    Theoretical and Mathematical Physics, 2006, 146 : 411 - 420
  • [30] When is the annihilating ideal graph of a zero-dimensional semiquasilocal commutative ring planar? Nonquasilocal case
    Visweswaran S.
    Lalchandani P.T.
    Bollettino dell'Unione Matematica Italiana, 2016, 9 (4) : 453 - 468