The annihilating graph of a ring

被引:0
|
作者
Z. Shafiei
M. Maghasedi
F. Heydari
S. Khojasteh
机构
[1] Karaj Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Lahijan Branch,undefined
[4] Islamic Azad University,undefined
来源
Mathematical Sciences | 2018年 / 12卷
关键词
Annihilating graph; Diameter; Girth; Planarity; 05C10; 05C25; 05C40; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}(A)$$\end{document}, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ann}(I){\rm Ann}(J)=0$$\end{document}. For every commutative ring A, we study the diameter and the girth of G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document}. Also, we prove that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a triangle-free graph, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a bipartite graph. Among other results, we show that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a tree, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({{\mathbb {Z}}}_n)$$\end{document} is a complete or a planar graph. Finally, we compute the domination number of G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({\mathbb {Z}}_n)$$\end{document}.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [31] The annihilating-ideal graph of commutative semigroups
    DeMeyer, Lisa
    Schneider, Anna
    JOURNAL OF ALGEBRA, 2017, 469 : 402 - 420
  • [32] On the strongly annihilating-submodule graph of a module
    Beyranvand, R.
    Farzi-Safarabadi, A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (02): : 443 - 454
  • [33] On perfectness of annihilating-ideal graph of Zn
    Saha, Manideepa
    Biswas, Sucharita
    Das, Angsuman
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, : 173 - 181
  • [34] THE ANNIHILATING-IDEAL GRAPH OF Zn IS WEAKLY PERFECT
    Nikandish, Reza
    Maimani, Hamid Reza
    Izanloo, Hasan
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2016, 11 (01) : 16 - 21
  • [35] A NOTE ON THE ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS
    Selvakumar, K.
    ARS COMBINATORIA, 2018, 137 : 113 - 122
  • [36] AN EXTENSION OF ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS
    Kerahroodi, Mahtab Koohi
    Nabaei, Fatemeh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1045 - 1056
  • [37] SOME RESULTS ON ANNIHILATING IDEAL GRAPH OF COMMUTATIVE RINGS
    Tayade, P. N.
    Surwade, K.
    Deore, R. P.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (04): : 501 - 514
  • [38] On the essential annihilating-ideal graph of commutative rings
    Nazim, Mohd
    Rehman, Nadeem ur
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (03)
  • [39] THE ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS I
    Behboodi, M.
    Rakeei, Z.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) : 727 - 739
  • [40] Annihilating and Centralizing Condition of Generalized Derivation in Prime Ring
    Dhara, Basudeb
    Kar, Sukhendu
    Bera, Manami
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2024, 48 (04) : 467 - 476