The annihilating graph of a ring

被引:0
|
作者
Z. Shafiei
M. Maghasedi
F. Heydari
S. Khojasteh
机构
[1] Karaj Branch,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Lahijan Branch,undefined
[4] Islamic Azad University,undefined
来源
Mathematical Sciences | 2018年 / 12卷
关键词
Annihilating graph; Diameter; Girth; Planarity; 05C10; 05C25; 05C40; 13A99;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring with unity. The annihilating graph of A, denoted by G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {G}}}(A)$$\end{document}, is a graph whose vertices are all non-trivial ideals of A and two distinct vertices I and J are adjacent if and only if Ann(I)Ann(J)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Ann}(I){\rm Ann}(J)=0$$\end{document}. For every commutative ring A, we study the diameter and the girth of G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document}. Also, we prove that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a triangle-free graph, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a bipartite graph. Among other results, we show that if G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a tree, then G(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}(A)$$\end{document} is a star or a double star graph. Moreover, we prove that the annihilating graph of a commutative ring cannot be a cycle. Let n be a positive integer number. We classify all integer numbers n for which G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({{\mathbb {Z}}}_n)$$\end{document} is a complete or a planar graph. Finally, we compute the domination number of G(Zn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {G}}({\mathbb {Z}}_n)$$\end{document}.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [1] The annihilating graph of a ring
    Shafiei, Z.
    Maghasedi, M.
    Heydari, F.
    Khojasteh, S.
    MATHEMATICAL SCIENCES, 2018, 12 (01) : 1 - 6
  • [2] THE ANNIHILATING-IDEAL GRAPH OF A RING
    Aliniaeifard, Farid
    Behboodi, Mahmood
    Li, Yuanlin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (06) : 1323 - 1336
  • [3] Perfectness of a graph associated with annihilating ideals of a ring
    Aghapouramin, V.
    Nikmehr, M. J.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
  • [4] The co-annihilating graph of a commutative ring
    Amjadi, J.
    Alilou, A.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (01)
  • [5] On the coloring of the annihilating-ideal graph of a commutative ring
    Aalipour, G.
    Akbari, S.
    Nikandish, R.
    Nikmehr, M. J.
    Shaveisi, F.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2620 - 2626
  • [6] On the clique number of the complement of the annihilating ideal graph of a commutative ring
    Visweswaran S.
    Patel H.D.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (2): : 307 - 320
  • [7] The spectrum subgraph of the annihilating-ideal graph of a commutative ring
    Taheri, R.
    Behboodi, M.
    Tehranian, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (08)
  • [8] THE TOTAL GRAPH OF ANNIHILATING ONE-SIDED IDEALS OF A RING
    Alibemani, Abolfazl
    Hashemi, Ebrahim
    Alhevaz, Abdollah
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 61 - 76
  • [9] THE ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO AN IDEAL
    Aliniaeifard, F.
    Behboodi, M.
    Mehdi-Nezhad, E.
    Rahimi, A. M.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (05) : 2269 - 2284
  • [10] Some results on the complement of the annihilating ideal graph of a commutative ring
    Visweswaran, S.
    Patel, Hiren D.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (07)