Non-Hermitian Hydrogen atom

被引:0
|
作者
Juan M. Romero
O. González-Gaxiola
R. Bernal-Jaquez
机构
[1] Universidad Autónoma Metropolitana-Cuajimalpa,Departmento de Matemáticas Aplicadas y Sistemas
来源
关键词
Hydrogen atom; Lie algebra; -symmetry Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
We have constructed a set of non-Hermitian operators that satisfy the commutation relations of the SO(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(3)$$\end{document}-Lie algebra. Using these set of operators we have constructed a non-Hermitian Hamiltonian corresponding to the Hydrogen atom that includes a complex term but with the same spectra as in the Hermitian case. It is also found a non-Hermitian Runge–Lenz vector that represents a conserved quantity. In this way, we obtain a set of non-Hermitian operators that satisfy the commutation relations of the SO(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(4)$$\end{document}-Lie algebra.
引用
收藏
页码:1990 / 2000
页数:10
相关论文
共 50 条
  • [41] On the Eigenvalues of a Non-Hermitian Hamiltonian
    Ergun, Ebru
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 245 - +
  • [42] Non-Hermitian topological ohmmeter
    Koenye, Viktor
    Ochkan, Kyrylo
    Chyzhykova, Anastasiia
    Budich, Jan Carl
    van den Brink, Jeroen
    Fulga, Ion Cosma
    Dufouleur, Joseph
    PHYSICAL REVIEW APPLIED, 2024, 22 (03):
  • [43] Non-Hermitian Topological Photonics
    Zhen, Bo
    Zhou, Hengyun
    Peng, Chao
    Yoon, Yoseob
    Hsu, Chia Wei
    Nelson, Keith A.
    Shen, Huitao
    Fu, Liang
    Joannopoulos, John D.
    Soljacic, Marin
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [44] Non-Hermitian Chern Bands
    Yao, Shunyu
    Song, Fei
    Wang, Zhong
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [45] Knotted non-Hermitian metals
    Carlstrom, Johan
    Stalhammar, Marcus
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [46] Non-Hermitian chiral anomalies
    Sayyad, Sharareh
    Hannukainen, Julia D.
    Grushin, Adolfo G.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [47] Non-hermitian quantum thermodynamics
    Gardas, Bartlomiej
    Deffner, Sebastian
    Saxena, Avadh
    SCIENTIFIC REPORTS, 2016, 6
  • [48] Non-Hermitian delocalization and eigenfunctions
    Hatano, N
    Nelson, DR
    PHYSICAL REVIEW B, 1998, 58 (13): : 8384 - 8390
  • [49] Gauging non-Hermitian Hamiltonians
    Jones, H. F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (13)
  • [50] Non-Hermitian shortcut to adiabaticity
    Torosov, Boyan T.
    Della Valle, Giuseppe
    Longhi, Stefano
    PHYSICAL REVIEW A, 2013, 87 (05):