Non-Hermitian Hydrogen atom

被引:0
|
作者
Juan M. Romero
O. González-Gaxiola
R. Bernal-Jaquez
机构
[1] Universidad Autónoma Metropolitana-Cuajimalpa,Departmento de Matemáticas Aplicadas y Sistemas
来源
关键词
Hydrogen atom; Lie algebra; -symmetry Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
We have constructed a set of non-Hermitian operators that satisfy the commutation relations of the SO(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(3)$$\end{document}-Lie algebra. Using these set of operators we have constructed a non-Hermitian Hamiltonian corresponding to the Hydrogen atom that includes a complex term but with the same spectra as in the Hermitian case. It is also found a non-Hermitian Runge–Lenz vector that represents a conserved quantity. In this way, we obtain a set of non-Hermitian operators that satisfy the commutation relations of the SO(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(4)$$\end{document}-Lie algebra.
引用
收藏
页码:1990 / 2000
页数:10
相关论文
共 50 条
  • [21] Non-Hermitian Anderson Transport
    Weidemann, Sebastian
    Kremer, Mark
    Longhi, Stefano
    Szameit, Alexander
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [22] A non-Hermitian circular billiard
    Patkar, Saket P.
    Jain, Sudhir R.
    PHYSICS LETTERS A, 2010, 374 (34) : 3396 - 3399
  • [23] Monopoles in non-Hermitian systems
    Zhang, Qi
    Wu, Biao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [24] Non-Hermitian landscape of autoionization
    Mouloudakis, G.
    Lambropoulos, P.
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [25] Non-Hermitian masking machine
    Metwally, N.
    Eid, A.
    EUROPEAN PHYSICAL JOURNAL D, 2024, 78 (06):
  • [26] NON-HERMITIAN YUKAWA COUPLINGS
    BRANCO, GC
    SILVAMARCOS, JI
    PHYSICS LETTERS B, 1994, 331 (3-4) : 390 - 394
  • [27] Non-hermitian integrable models
    Bogolyubov N.M.
    Journal of Mathematical Sciences, 2001, 104 (3) : 1097 - 1104
  • [28] Non-Hermitian superintegrable systems
    Correa, Francisco
    Inzunza, Luis
    Marquette, Ian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (34)
  • [29] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [30] Non-Hermitian Floquet invisibility
    Longhi, S.
    EPL, 2017, 117 (01)