Non-Hermitian Hydrogen atom

被引:0
|
作者
Juan M. Romero
O. González-Gaxiola
R. Bernal-Jaquez
机构
[1] Universidad Autónoma Metropolitana-Cuajimalpa,Departmento de Matemáticas Aplicadas y Sistemas
来源
关键词
Hydrogen atom; Lie algebra; -symmetry Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
We have constructed a set of non-Hermitian operators that satisfy the commutation relations of the SO(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(3)$$\end{document}-Lie algebra. Using these set of operators we have constructed a non-Hermitian Hamiltonian corresponding to the Hydrogen atom that includes a complex term but with the same spectra as in the Hermitian case. It is also found a non-Hermitian Runge–Lenz vector that represents a conserved quantity. In this way, we obtain a set of non-Hermitian operators that satisfy the commutation relations of the SO(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(4)$$\end{document}-Lie algebra.
引用
收藏
页码:1990 / 2000
页数:10
相关论文
共 50 条
  • [31] Non-Hermitian localization and delocalization
    Feinberg, J
    Zee, A
    PHYSICAL REVIEW E, 1999, 59 (06): : 6433 - 6443
  • [32] Non-Hermitian squeezed polarons
    Qin, Fang
    Shen, Ruizhe
    Lee, Ching Hua
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [33] Non-Hermitian quantum rings
    Longhi, Stefano
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [34] Non-Hermitian Global Synchronization
    Zhang, Weixuan
    Di, Fengxiao
    Zhang, Xiangdong
    ADVANCED SCIENCE, 2025, 12 (02)
  • [35] Non-Hermitian Line Waves
    Galdi, V
    2021 FIFTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS), 2021, : X129 - X131
  • [36] The dawn of non-Hermitian optics
    El-Ganainy, Ramy
    Khajavikhan, Mercedeh
    Christodoulides, Demetrios N.
    Ozdemir, Sahin K.
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [37] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [38] Non-hermitian quantum thermodynamics
    Bartłomiej Gardas
    Sebastian Deffner
    Avadh Saxena
    Scientific Reports, 6
  • [39] Perspective on non-Hermitian elastodynamics
    Christensen, Johan
    Haberman, Michael R.
    Srivastava, Ankit
    Huang, Guoliang
    Shmuel, Gal
    APPLIED PHYSICS LETTERS, 2024, 125 (23)
  • [40] Sensitivity of non-Hermitian systems
    Edvardsson, Elisabet
    Ardonne, Eddy
    PHYSICAL REVIEW B, 2022, 106 (11)