Non-Hermitian Hydrogen atom

被引:0
|
作者
Juan M. Romero
O. González-Gaxiola
R. Bernal-Jaquez
机构
[1] Universidad Autónoma Metropolitana-Cuajimalpa,Departmento de Matemáticas Aplicadas y Sistemas
来源
关键词
Hydrogen atom; Lie algebra; -symmetry Hamiltonians;
D O I
暂无
中图分类号
学科分类号
摘要
We have constructed a set of non-Hermitian operators that satisfy the commutation relations of the SO(3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(3)$$\end{document}-Lie algebra. Using these set of operators we have constructed a non-Hermitian Hamiltonian corresponding to the Hydrogen atom that includes a complex term but with the same spectra as in the Hermitian case. It is also found a non-Hermitian Runge–Lenz vector that represents a conserved quantity. In this way, we obtain a set of non-Hermitian operators that satisfy the commutation relations of the SO(4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(4)$$\end{document}-Lie algebra.
引用
收藏
页码:1990 / 2000
页数:10
相关论文
共 50 条
  • [1] Non-Hermitian Hydrogen atom
    Romero, Juan M.
    Gonzalez-Gaxiola, O.
    Bernal-Jaquez, R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 1990 - 2000
  • [2] Exact solution of the non-Hermitian eigenvalue problem for electron orbital excitations in a hydrogen atom
    Popov, Andrey, V
    CANADIAN JOURNAL OF PHYSICS, 2021, 99 (05) : 387 - 389
  • [3] Non-Hermitian Skin Effect in Non-Hermitian Optical Systems
    Zhang, Yingqiu
    Wei, Zhongchao
    LASER & PHOTONICS REVIEWS, 2025, 19 (01)
  • [4] Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
    Liu, Shuo
    Shao, Ruiwen
    Ma, Shaojie
    Zhang, Lei
    You, Oubo
    Wu, Haotian
    Xiang, Yuan Jiang
    Cui, Tie Jun
    Zhang, Shuang
    RESEARCH, 2021, 2021
  • [5] Interactions of Hermitian and non-Hermitian Hamiltonians
    Bender, Carl M.
    Jones, Hugh F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [6] Non-Hermitian physics
    Ashida, Yuto
    Gong, Zongping
    Ueda, Masahito
    ADVANCES IN PHYSICS, 2020, 69 (03) : 249 - 435
  • [7] Non-Hermitian Optomechanics
    Primo, Andre G.
    Carvalho, Natalia C.
    Kersul, Cane M.
    Wiederhecker, Gustavo S.
    Frateschi, Newton C.
    Alegre, Thiago P. M.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [8] Comparing Hermitian and Non-Hermitian Quantum Electrodynamics
    Southall, Jake
    Hodgson, Daniel
    Purdy, Robert
    Beige, Almut
    SYMMETRY-BASEL, 2022, 14 (09):
  • [9] Non-Hermitian Topology in Hermitian Topological Matter
    Hamanaka, Shu
    Yoshida, Tsuneya
    Kawabata, Kohei
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)
  • [10] BLIND DECONVOLUTION OF A HERMITIAN AND A NON-HERMITIAN FUNCTION
    NAKAJIMA, N
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1991, 8 (05): : 808 - 813