Existence of solutions for a class of Kirchhoff-type equations with indefinite potential

被引:0
|
作者
Jian Zhou
Yunshun Wu
机构
[1] Guizhou Nromal University,School of Mathematical Sciences
来源
关键词
Kirchhoff-type equation; Variational methods; Palais–Smale condition; Local linking; Morse theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: {−(a+b∫R3|∇u|2dx)Δu+V(x)u=f(x,u),in R3,u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ \end{document} where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} are constants, and the potential V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory.
引用
收藏
相关论文
共 50 条