Existence of solutions for a class of Kirchhoff-type equations with indefinite potential

被引:0
|
作者
Jian Zhou
Yunshun Wu
机构
[1] Guizhou Nromal University,School of Mathematical Sciences
来源
关键词
Kirchhoff-type equation; Variational methods; Palais–Smale condition; Local linking; Morse theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: {−(a+b∫R3|∇u|2dx)Δu+V(x)u=f(x,u),in R3,u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ \end{document} where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} are constants, and the potential V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory.
引用
收藏
相关论文
共 50 条
  • [21] Existence and bifurcation behavior of positive solutions for a class of Kirchhoff-type problems
    Chen, Bin
    Ou, Zeng Qi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (10) : 2859 - 2866
  • [22] Existence of Solutions to a Class of Kirchhoff-Type Equation with a General Subcritical Nonlinearity
    Yong-Yi Lan
    Mediterranean Journal of Mathematics, 2015, 12 : 851 - 861
  • [23] Existence of Solutions for a Class of Kirchhoff-Type Equation via Young Measures
    Azroul, Elhoussine
    Balaadich, Farah
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (04) : 460 - 473
  • [24] An Existence Result for Fractional Kirchhoff-Type Equations
    Bisci, Giovanni Molica
    Tulone, Francesco
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2016, 35 (02): : 181 - 197
  • [25] Existence of ground state solutions for Kirchhoff-type problem with variable potential
    Hu, Die
    Tang, Xianhua
    Zhang, Qi
    APPLICABLE ANALYSIS, 2023, 102 (01) : 168 - 181
  • [26] Multiple nodal solutions for a class of Kirchhoff-type equations in high dimensions
    Zhang, He
    Chen, Haibo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [27] Concentration phenomenon of solutions for a class of Kirchhoff-type equations with critical growth
    Li, Quanqing
    Teng, Kaimin
    Wang, Wenbo
    Zhang, Jian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (02)
  • [28] Multiple nodal solutions for a class of Kirchhoff-type equations in high dimensions
    He Zhang
    Haibo Chen
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [29] The existence of a ground-state solution for a class of Kirchhoff-type equations in RN
    Liu, Jiu
    Liao, Jia-Feng
    Tang, Chun-Lei
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (02) : 371 - 391
  • [30] Multiple positive solutions for a class of Kirchhoff type equations with indefinite nonlinearities
    Che, Guofeng
    Wu, Tsung-fang
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 11 (01) : 598 - 619