Existence of solutions for a class of Kirchhoff-type equations with indefinite potential

被引:0
|
作者
Jian Zhou
Yunshun Wu
机构
[1] Guizhou Nromal University,School of Mathematical Sciences
来源
关键词
Kirchhoff-type equation; Variational methods; Palais–Smale condition; Local linking; Morse theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: {−(a+b∫R3|∇u|2dx)Δu+V(x)u=f(x,u),in R3,u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ \end{document} where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} are constants, and the potential V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory.
引用
收藏
相关论文
共 50 条
  • [31] EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL
    Duan, Yueliang
    Zhou, Yinggao
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [32] Existence of nontrivial weak solutions for p-biharmonic Kirchhoff-type equations
    Jung-Hyun Bae
    Jae-Myoung Kim
    Jongrak Lee
    Kisoeb Park
    Boundary Value Problems, 2019
  • [33] Existence and Multiplicity of Positive Solutions for Kirchhoff-Type Equations with the Critical Sobolev Exponent
    Zhou, Junjun
    Hu, Xiangyun
    Xiao, Tiaojie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [34] Existence of nontrivial weak solutions for p-biharmonic Kirchhoff-type equations
    Bae, Jung-Hyun
    Kim, Jae-Myoung
    Lee, Jongrak
    Park, Kisoeb
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [35] On the eigenvalue problem for a class of Kirchhoff-type equations
    Mende, Osvaldo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [36] Existence and Concentration Results for the General Kirchhoff-Type Equations
    Yinbin Deng
    Wei Shuai
    Xuexiu Zhong
    The Journal of Geometric Analysis, 2023, 33
  • [37] Existence and Concentration Results for the General Kirchhoff-Type Equations
    Deng, Yinbin
    Shuai, Wei
    Zhong, Xuexiu
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [38] Multiple solutions for Kirchhoff-type equations in RN
    Ye, Yiwei
    Tang, Chun-Lei
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (08)
  • [39] Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential
    Xie, Qilin
    Ma, Shiwang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) : 1210 - 1223
  • [40] Existence and Multiplicity of Solutions for Fractional κ(ξ)-Kirchhoff-Type Equation
    Sousa, J. Vanterler da C.
    Kucche, Kishor D.
    Nieto, Juan J.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)