Existence of solutions for a class of Kirchhoff-type equations with indefinite potential

被引:0
|
作者
Jian Zhou
Yunshun Wu
机构
[1] Guizhou Nromal University,School of Mathematical Sciences
来源
关键词
Kirchhoff-type equation; Variational methods; Palais–Smale condition; Local linking; Morse theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: {−(a+b∫R3|∇u|2dx)Δu+V(x)u=f(x,u),in R3,u∈H1(R3),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ \end{document} where a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a,b>0$\end{document} are constants, and the potential V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V(x)$\end{document} is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory.
引用
收藏
相关论文
共 50 条
  • [1] Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
    Zhou, Jian
    Wu, Yunshun
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [2] On existence and multiplicity of solutions for Kirchhoff-type equations with a nonsmooth potential
    Yuan, Ziqing
    Huang, Lihong
    BOUNDARY VALUE PROBLEMS, 2015,
  • [3] On existence and multiplicity of solutions for Kirchhoff-type equations with a nonsmooth potential
    Ziqing Yuan
    Lihong Huang
    Boundary Value Problems, 2015
  • [4] Existence and Multiplicity Results for a Class of Kirchhoff-Type Equations
    Tavani, Mohammad Reza Heidari
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 441 - 459
  • [5] Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations
    Li, Quanqing
    Nie, Jianjun
    Wang, Wenbo
    Zhang, Jian
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12411 - 12445
  • [6] Existence and Asymptotic Behavior of Localized Nodal Solutions for a Class of Kirchhoff-Type Equations
    Quanqing Li
    Jianjun Nie
    Wenbo Wang
    Jian Zhang
    The Journal of Geometric Analysis, 2021, 31 : 12411 - 12445
  • [7] Existence and multiplicity of solutions for an indefinite Kirchhoff-type equation in bounded domains
    Sun, Juntao
    Wu, Tsung-fang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (02) : 435 - 448
  • [8] Existence and multiplicity of solutions for p(.)-Kirchhoff-type equations
    AyazoClu, Rabil
    Akbulut, Sezgin
    Akkoyunlu, Ebubekir
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1342 - 1359
  • [9] Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
    Zhiying Cui
    Wei Shuai
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [10] Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
    Cui, Zhiying
    Shuai, Wei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):