On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ

被引:0
|
作者
Lian-Ta Su
Reşat Aslan
Feng-Song Zheng
M. Mursaleen
机构
[1] Quanzhou Normal University,Fujian Provincial Key Laboratory of Data
[2] Harran University,Intensive Computing, Key Laboratory of Intelligent Computing and Information Processing, School of Mathematics and Computer Science
[3] China Medical University (Taiwan),Department of Mathematics, Faculty of Sciences and Arts
[4] Aligarh Muslim University,Department of Medical Research, China Medical University Hospital
关键词
Durrmeyer operators; -Bernstein operators; Shape parameter ; Lipschitz-type function; Peetre’s ; -functional; 41A25; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider several approximation properties of a Durrmeyer variant of q-Bernstein operators based on Bézier basis with the shape parameter λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document}. First, we calculate some moment estimates and show the uniform convergence of the proposed operators. Next, we investigate the degree of approximation with regard to the usual modulus of continuity, for elements of Lipschitz-type class and Peetre’s K-functional, respectively. Finally, to compare the convergence behavior and consistency of the related operators, we demonstrate some convergence and error graphs for certain λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document} and q-integers.
引用
收藏
相关论文
共 50 条
  • [41] Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators
    Dong, Lvxiu
    Yu, Dansheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [42] Some Statistical and Direct Approximation Properties for a New Form of the Generalization of q-Bernstein Operators with the Parameter λ
    Su, Lian-Ta
    Kangal, Esma
    Kantar, uelkue Dinlemez
    Cai, Qing-Bo
    AXIOMS, 2024, 13 (07)
  • [43] The norm estimates of the q-Bernstein operators for varying q > 1
    Ostrovska, Sofiya
    Ozban, Ahmet Yasar
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4758 - 4771
  • [44] BERNSTEIN DURRMEYER OPERATORS BASED ON TWO PARAMETERS
    Gupta, Vijay
    Aral, Ali
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (01): : 79 - 95
  • [45] On Durrmeyer Type λ-Bernstein Operators via (p, q)-Calculus
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [46] Statistical Approximation of the q-Bernstein-Durrmeyer Type Operators
    Ren, Mei-Ying
    FUZZY SYSTEMS & OPERATIONS RESEARCH AND MANAGEMENT, 2016, 367 : 117 - 124
  • [47] On Durrmeyer-type generalization of (p, q)-Bernstein operators
    Sharma, Honey
    ARABIAN JOURNAL OF MATHEMATICS, 2016, 5 (04) : 239 - 248
  • [48] Approximation properties and error estimation of q-Bernstein shifted operators
    Mursaleen, Mohammad
    Ansari, Khursheed J.
    Khan, Asif
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 207 - 227
  • [49] On statistical approximation properties of Kantorovich type q-Bernstein operators
    Dalmanoglu, Oezge
    Dogru, Oguen
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 760 - 771
  • [50] Approximation properties and error estimation of q-Bernstein shifted operators
    Mohammad Mursaleen
    Khursheed J. Ansari
    Asif Khan
    Numerical Algorithms, 2020, 84 : 207 - 227