On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ

被引:0
|
作者
Lian-Ta Su
Reşat Aslan
Feng-Song Zheng
M. Mursaleen
机构
[1] Quanzhou Normal University,Fujian Provincial Key Laboratory of Data
[2] Harran University,Intensive Computing, Key Laboratory of Intelligent Computing and Information Processing, School of Mathematics and Computer Science
[3] China Medical University (Taiwan),Department of Mathematics, Faculty of Sciences and Arts
[4] Aligarh Muslim University,Department of Medical Research, China Medical University Hospital
关键词
Durrmeyer operators; -Bernstein operators; Shape parameter ; Lipschitz-type function; Peetre’s ; -functional; 41A25; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider several approximation properties of a Durrmeyer variant of q-Bernstein operators based on Bézier basis with the shape parameter λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document}. First, we calculate some moment estimates and show the uniform convergence of the proposed operators. Next, we investigate the degree of approximation with regard to the usual modulus of continuity, for elements of Lipschitz-type class and Peetre’s K-functional, respectively. Finally, to compare the convergence behavior and consistency of the related operators, we demonstrate some convergence and error graphs for certain λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document} and q-integers.
引用
收藏
相关论文
共 50 条
  • [31] Stancu type q-Bernstein operators with shifted knots
    M. Mursaleen
    Mohd Qasim
    Asif Khan
    Zaheer Abbas
    Journal of Inequalities and Applications, 2020
  • [32] Some properties of q-Bernstein-Durrmeyer operators
    Karsli, Harun
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (04) : 189 - 204
  • [33] Phillips-Type q-Bernstein Operators on Triangl
    Khan, Asif
    Mansoori, M. S.
    Khan, Khalid
    Mursaleen, M.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [34] THE DISTANCE BETWEEN TWO LIMIT q-BERNSTEIN OPERATORS
    Ostrovska, Sofiya
    Turan, Mehmet
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (03) : 1085 - 1096
  • [35] SOME APPROXIMATION RESULTS ON MODIFIED q-BERNSTEIN OPERATORS
    Aslan, Resat
    Izgi, Aydin
    JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (01): : 58 - 70
  • [36] Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α
    Mohiuddine, S. A. -
    Ozger, Faruk
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [37] Stancu type q-Bernstein operators with shifted knots
    Mursaleen, M.
    Qasim, Mohd
    Khan, Asif
    Abbas, Zaheer
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [38] RETRACTED: On eigenstructure of q-Bernstein operators (Retracted Article)
    Naaz, Ambreen
    Mursaleen, M.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
  • [39] Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators
    Lvxiu Dong
    Dansheng Yu
    Journal of Inequalities and Applications, 2017
  • [40] Shape-preserving properties of ω, q-Bernstein polynomials
    Wang, Heping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (04) : 957 - 967