On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ

被引:0
|
作者
Lian-Ta Su
Reşat Aslan
Feng-Song Zheng
M. Mursaleen
机构
[1] Quanzhou Normal University,Fujian Provincial Key Laboratory of Data
[2] Harran University,Intensive Computing, Key Laboratory of Intelligent Computing and Information Processing, School of Mathematics and Computer Science
[3] China Medical University (Taiwan),Department of Mathematics, Faculty of Sciences and Arts
[4] Aligarh Muslim University,Department of Medical Research, China Medical University Hospital
关键词
Durrmeyer operators; -Bernstein operators; Shape parameter ; Lipschitz-type function; Peetre’s ; -functional; 41A25; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider several approximation properties of a Durrmeyer variant of q-Bernstein operators based on Bézier basis with the shape parameter λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document}. First, we calculate some moment estimates and show the uniform convergence of the proposed operators. Next, we investigate the degree of approximation with regard to the usual modulus of continuity, for elements of Lipschitz-type class and Peetre’s K-functional, respectively. Finally, to compare the convergence behavior and consistency of the related operators, we demonstrate some convergence and error graphs for certain λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document} and q-integers.
引用
收藏
相关论文
共 50 条
  • [21] Higher Order Generalization of q-Bernstein Operators
    Sabancigil, Pembe
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (04) : 821 - 827
  • [22] Retraction Note: On eigenstructure of q-Bernstein operators
    Ambreen Naaz
    M. Mursaleen
    Analysis and Mathematical Physics, 2021, 11
  • [23] Approximation by Kantorovich type q-Bernstein operators
    Dalmanoglu, Ozge
    APPLIED MATHEMATICS FOR SCIENCE AND ENGINEERING, 2007, : 113 - +
  • [24] THE CONVERGENCE OF q-BERNSTEIN POLYNOMIALS (0 < q < 1) AND LIMIT q-BERNSTEIN OPERATORS IN COMPLEX DOMAINS
    Ostrovska, Sofiya
    Wang, Heping
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1279 - 1291
  • [25] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358
  • [26] Local approximation by a variant of Bernstein-Durrmeyer operators
    Abel, Ulrich
    Gupta, Vijay
    Mohapatra, Ram N.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) : 3372 - 3381
  • [27] The moments for q-Bernstein operators in the case 0 < q < 1
    Nazim Mahmudov
    Numerical Algorithms, 2010, 53 : 439 - 450
  • [28] On Pointwise Convergence of q-Bernstein Operators and Their q-Derivatives
    Acar, Tuncer
    Aral, Ali
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (03) : 287 - 304
  • [29] Genuine q-Stancu-Bernstein-Durrmeyer Operators
    Sabancigil, Pembe
    SYMMETRY-BASEL, 2023, 15 (02):
  • [30] Complex operators generated by q-Bernstein polynomials, q >= 1
    Bascanbaz-Tunca, Gulen
    Cetin, Nursel
    Gal, Sorin G.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (02): : 169 - 176