On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ

被引:0
|
作者
Lian-Ta Su
Reşat Aslan
Feng-Song Zheng
M. Mursaleen
机构
[1] Quanzhou Normal University,Fujian Provincial Key Laboratory of Data
[2] Harran University,Intensive Computing, Key Laboratory of Intelligent Computing and Information Processing, School of Mathematics and Computer Science
[3] China Medical University (Taiwan),Department of Mathematics, Faculty of Sciences and Arts
[4] Aligarh Muslim University,Department of Medical Research, China Medical University Hospital
关键词
Durrmeyer operators; -Bernstein operators; Shape parameter ; Lipschitz-type function; Peetre’s ; -functional; 41A25; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider several approximation properties of a Durrmeyer variant of q-Bernstein operators based on Bézier basis with the shape parameter λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document}. First, we calculate some moment estimates and show the uniform convergence of the proposed operators. Next, we investigate the degree of approximation with regard to the usual modulus of continuity, for elements of Lipschitz-type class and Peetre’s K-functional, respectively. Finally, to compare the convergence behavior and consistency of the related operators, we demonstrate some convergence and error graphs for certain λ∈[−1,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda \in[ -1,1]$\end{document} and q-integers.
引用
收藏
相关论文
共 50 条
  • [1] On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ
    Su, Lian-Ta
    Aslan, Resat
    Zheng, Feng-Song
    Mursaleen, M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [2] Note on a New Construction of Kantorovich Form q-Bernstein Operators Related to Shape Parameter λ
    Cai, Qingbo
    Aslan, Resat
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (03): : 1479 - 1493
  • [3] On a New Construction of Generalized q-Bernstein Polynomials Based on Shape Parameter λ
    Cai, Qing-Bo
    Aslan, Resat
    SYMMETRY-BASEL, 2021, 13 (10):
  • [4] On the eigenfunctions of the q-Bernstein operators
    Sofiya Ostrovska
    Mehmet Turan
    Annals of Functional Analysis, 2023, 14
  • [5] On the eigenfunctions of the q-Bernstein operators
    Ostrovska, Sofiya
    Turan, Mehmet
    ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (01)
  • [6] On the eigenvectors of the q-Bernstein operators
    Ostrovska, S.
    Turan, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (04) : 562 - 570
  • [7] Approximation by q-Bernstein type operators
    Zoltán Finta
    Czechoslovak Mathematical Journal, 2011, 61 : 329 - 336
  • [8] The Limit q-Bernstein Operators with Varying q
    Almesbahi, Manal Mastafa
    Ostrovska, Sofiya
    Turan, Mehmet
    MATHEMATICAL METHODS IN ENGINEERING: THEORETICAL ASPECTS, 2019, 23 : 203 - 215
  • [9] APPROXIMATION BY q-BERNSTEIN TYPE OPERATORS
    Finta, Zoltan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (02) : 329 - 336
  • [10] Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators
    Acu, Ana-Maria
    Muraru, Carmen Violeta
    Sofonea, Daniel Florin
    Radu, Voichita Adriana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) : 5636 - 5650