Effects of fuel salt composition on fuel salt temperature coefficient (FSTC) for an under-moderated molten salt reactor (MSR)

被引:0
|
作者
Xiao-Xiao Li
Yu-Wen Ma
Cheng-Gang Yu
Chun-Yan Zou
Xiang-Zhou Cai
Jin-Gen Chen
机构
[1] Chinese Academy of Sciences,Shanghai Institute of Applied Physics
[2] Chinese Academy of Sciences,CAS Innovative Academies in TMSR Energy System
[3] University of Chinese Academy of Sciences,undefined
来源
Nuclear Science and Techniques | 2018年 / 29卷
关键词
Molten salt reactor (MSR); Fuel salt temperature coefficient (FSTC); Six-factor formula;
D O I
暂无
中图分类号
学科分类号
摘要
With respect to a liquid-fueled molten salt reactor (MSR), the temperature coefficient of reactivity mainly includes the moderator temperature coefficient (MTC) and the fuel salt temperature coefficient (FSTC). The FSTC is typically divided into the Doppler coefficient and the density coefficient. In order to compensate for the potentially positive MTC, the FSTC should be sufficiently negative, and this is mostly optimized in terms of the geometry aspect in pioneering studies. However, the properties of fuel salt also directly influence the FSTC. Thus, the effects of different fuel salt compositions including the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment, heavy metal proportion in salt phase (HM proportion), and the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment on FSTC are investigated from the viewpoint of the essential six-factor formula. The analysis is based on an under-moderated MSR. With respect to the Doppler coefficient, the temperature coefficient of the fast fission factors (αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document}) is positive and those of the resonance escape probability (αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}), thermal reproduction factor (αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document}), thermal utilization factor (αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document}), and total non-leakage probability (αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}) are negative. With respect to the density coefficient, αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document} and αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document} are positive, while the others are negative. The results indicate that the effects of the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment and HM on FSTC are mainly reflected in αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document} and αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, which are the dominant factors when the neutron spectrum is relatively hard. Furthermore, the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment influences FSTC by αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document} and αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}, which are the key factors in a relative soft spectrum. In order to obtain a more negative FSTC for an under-moderated MSR, the possible positive density coefficient, especially its αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, should be suppressed. Thus, a lower 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment (albeit higher than a certain value, 5 wt% in this article) along with a lower HM proportion and/or a higher 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment are recommended. The analyses provide an approach to achieve a more suitable fuel salt composition with a sufficiently negative FSTC.
引用
收藏
相关论文
共 50 条
  • [41] Transition to thorium fuel cycle on a heavy water moderated molten salt reactor by using low enrichment uranium
    Wu, Jianhui
    Chen, Jingen
    Zou, Chunyan
    Yu, Chenggang
    Cai, Xiangzhou
    Zhang, Yapeng
    ANNALS OF NUCLEAR ENERGY, 2022, 165
  • [42] In-core fuel management strategy for the basket-fuel-assembly molten salt reactor
    Chun Xue
    Zhi-Yong Zhu
    Hai-Qing Zhang
    Jun Lin
    Nuclear Science and Techniques, 2017, 28
  • [43] In-core fuel management strategy for the basket-fuel-assembly molten salt reactor
    Chun Xue
    Zhi-Yong Zhu
    Hai-Qing Zhang
    Jun Lin
    NuclearScienceandTechniques, 2017, 28 (09) : 86 - 98
  • [44] In-core fuel management strategy for the basket-fuel-assembly molten salt reactor
    Xue, Chun
    Zhu, Zhi-Yong
    Zhang, Hai-Qing
    Lin, Jun
    NUCLEAR SCIENCE AND TECHNIQUES, 2017, 28 (09)
  • [45] HEAT TRANSFER SIMULATION OF THE FUEL TRANSPORT CASK FOR SPHERICAL FUEL ELEMENTS IN MOLTEN SALT REACTOR
    Liu, Yang
    Wang, Jun
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, 2016, VOL 3, 2016,
  • [46] Molten salt corrosion of Ni-Mo-Cr candidate structural materials for Molten Salt Reactor (MSR) systems
    Muransky, O.
    Yang, C.
    Zhu, H.
    Karatchevtseva, I.
    Slama, P.
    Novy, Z.
    Edwards, L.
    CORROSION SCIENCE, 2019, 159
  • [47] CFD ANALYSIS OF HEAT TRANSFER IN MOLTEN SALT FUEL CHAMBERS OF THE WIELENGA INNOVATION STATIC SALT REACTOR (WISSR)
    Khaleb, I.
    Wielenga, T.
    Yang, W. S.
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 7, ICONE31 2024, 2024,
  • [48] A novel concept for a molten salt reactor moderated by heavy water
    Wu, Jianhui
    Chen, Jingen
    Kang, Xuzhong
    Li, Xiaoxiao
    Yu, Chenggang
    Zou, Chunyan
    Cai, Xiangzhou
    ANNALS OF NUCLEAR ENERGY, 2019, 132 : 391 - 403
  • [49] Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor
    Zhang, Ya-Peng
    Ma, Yu-Wen
    Wu, Jian-Hui
    Chen, Jin-Gen
    Cai, Xiang-Zhou
    NUCLEAR SCIENCE AND TECHNIQUES, 2020, 31 (11)
  • [50] Thorium Fuel Cycle for a Molten Salt Reactor: State of Missouri Feasibility Study
    Lee, Yoonjo Jo Jo
    Simones, Matthew Paul
    Kennedy, John C.
    Us, Hakan
    Makarewicz, Philip F.
    Neher, Janese Annetta
    Prelas, Mark A.
    2014 ASEE ANNUAL CONFERENCE, 2014,