Effects of fuel salt composition on fuel salt temperature coefficient (FSTC) for an under-moderated molten salt reactor (MSR)

被引:0
|
作者
Xiao-Xiao Li
Yu-Wen Ma
Cheng-Gang Yu
Chun-Yan Zou
Xiang-Zhou Cai
Jin-Gen Chen
机构
[1] Chinese Academy of Sciences,Shanghai Institute of Applied Physics
[2] Chinese Academy of Sciences,CAS Innovative Academies in TMSR Energy System
[3] University of Chinese Academy of Sciences,undefined
来源
Nuclear Science and Techniques | 2018年 / 29卷
关键词
Molten salt reactor (MSR); Fuel salt temperature coefficient (FSTC); Six-factor formula;
D O I
暂无
中图分类号
学科分类号
摘要
With respect to a liquid-fueled molten salt reactor (MSR), the temperature coefficient of reactivity mainly includes the moderator temperature coefficient (MTC) and the fuel salt temperature coefficient (FSTC). The FSTC is typically divided into the Doppler coefficient and the density coefficient. In order to compensate for the potentially positive MTC, the FSTC should be sufficiently negative, and this is mostly optimized in terms of the geometry aspect in pioneering studies. However, the properties of fuel salt also directly influence the FSTC. Thus, the effects of different fuel salt compositions including the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment, heavy metal proportion in salt phase (HM proportion), and the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment on FSTC are investigated from the viewpoint of the essential six-factor formula. The analysis is based on an under-moderated MSR. With respect to the Doppler coefficient, the temperature coefficient of the fast fission factors (αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document}) is positive and those of the resonance escape probability (αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}), thermal reproduction factor (αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document}), thermal utilization factor (αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document}), and total non-leakage probability (αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}) are negative. With respect to the density coefficient, αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document} and αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document} are positive, while the others are negative. The results indicate that the effects of the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment and HM on FSTC are mainly reflected in αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document} and αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, which are the dominant factors when the neutron spectrum is relatively hard. Furthermore, the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment influences FSTC by αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document} and αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}, which are the key factors in a relative soft spectrum. In order to obtain a more negative FSTC for an under-moderated MSR, the possible positive density coefficient, especially its αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, should be suppressed. Thus, a lower 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment (albeit higher than a certain value, 5 wt% in this article) along with a lower HM proportion and/or a higher 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment are recommended. The analyses provide an approach to achieve a more suitable fuel salt composition with a sufficiently negative FSTC.
引用
收藏
相关论文
共 50 条
  • [31] Preliminary research on selective extraction of 99Mo from fuel salt for molten salt reactor
    Niu, Yongsheng
    Sun, Lixin
    Fu, Haiying
    Dou, Qiang
    Qian, Yuan
    Li, Qingnuan
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 345
  • [32] Characteristic of molten fluoride salt system LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) as coolant and fuel carrier in molten salt reactor (MSR)
    Bahri, Che Nor Aniza Che Zainul
    Al-Areqi, Wadee'ah Mohd
    Ruf, Mohd'Izzat Fahmi Mohd
    Ab Majid, Amran
    ADVANCING NUCLEAR SCIENCE AND ENGINEERING FOR SUSTAINABLE NUCLEAR ENERGY KNOWLEDGE, 2017, 1799
  • [33] SMALL MODULAR MOLTEN SALT REACTOR (SM-MSR)
    Sabharwall, Piyush
    Mckellar, Michael
    Kim, Eung Soo
    Patterson, Mike
    PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011), 2012, : 31 - 39
  • [34] Development of a multiphysics model for the study of fuel compressibility effects in the Molten Salt Fast Reactor
    Cervi, E.
    Lorenzi, S.
    Cammi, A.
    Luzzi, L.
    CHEMICAL ENGINEERING SCIENCE, 2019, 193 : 379 - 393
  • [35] Effective Delayed Neutron Fraction in a Molten Salt Reactor with Circulating Fuel
    K. S. Kupriyanov
    O. S. Feinberg
    V. V. Ignatiev
    Physics of Atomic Nuclei, 2022, 85 : 1391 - 1399
  • [36] Assessing the benefit of thorium fuel in a once through molten salt reactor
    Dwijayanto, R. Andika Putra
    Miftasani, Fitria
    Harto, Andang Widi
    PROGRESS IN NUCLEAR ENERGY, 2024, 176
  • [37] Molten salt fast reactor with U-Pu fuel cycle
    Degtyarev, Alexej
    Myasnikov, Andrej
    Ponomarev, Leonid
    PROGRESS IN NUCLEAR ENERGY, 2015, 82 : 33 - 36
  • [38] Effective Delayed Neutron Fraction in a Molten Salt Reactor with Circulating Fuel
    Kupriyanov, K. S.
    Feinberg, O. S.
    Ignatiev, V. V.
    PHYSICS OF ATOMIC NUCLEI, 2022, 85 (08) : 1391 - 1399
  • [39] Criticality safety analysis of nuclear fuel storage of molten salt reactor
    Zhen, Yang
    Zhimin, Dai
    Zhangzhong, Yang
    Yang, Zou
    He Jishu/Nuclear Techniques, 2024, 47 (08):
  • [40] Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE
    Betzler, Benjamin R.
    Powers, Jeffrey J.
    Worrall, Andrew
    ANNALS OF NUCLEAR ENERGY, 2017, 101 : 489 - 503