Effects of fuel salt composition on fuel salt temperature coefficient (FSTC) for an under-moderated molten salt reactor (MSR)

被引:0
|
作者
Xiao-Xiao Li
Yu-Wen Ma
Cheng-Gang Yu
Chun-Yan Zou
Xiang-Zhou Cai
Jin-Gen Chen
机构
[1] Chinese Academy of Sciences,Shanghai Institute of Applied Physics
[2] Chinese Academy of Sciences,CAS Innovative Academies in TMSR Energy System
[3] University of Chinese Academy of Sciences,undefined
来源
Nuclear Science and Techniques | 2018年 / 29卷
关键词
Molten salt reactor (MSR); Fuel salt temperature coefficient (FSTC); Six-factor formula;
D O I
暂无
中图分类号
学科分类号
摘要
With respect to a liquid-fueled molten salt reactor (MSR), the temperature coefficient of reactivity mainly includes the moderator temperature coefficient (MTC) and the fuel salt temperature coefficient (FSTC). The FSTC is typically divided into the Doppler coefficient and the density coefficient. In order to compensate for the potentially positive MTC, the FSTC should be sufficiently negative, and this is mostly optimized in terms of the geometry aspect in pioneering studies. However, the properties of fuel salt also directly influence the FSTC. Thus, the effects of different fuel salt compositions including the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment, heavy metal proportion in salt phase (HM proportion), and the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment on FSTC are investigated from the viewpoint of the essential six-factor formula. The analysis is based on an under-moderated MSR. With respect to the Doppler coefficient, the temperature coefficient of the fast fission factors (αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document}) is positive and those of the resonance escape probability (αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}), thermal reproduction factor (αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document}), thermal utilization factor (αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document}), and total non-leakage probability (αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}) are negative. With respect to the density coefficient, αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document} and αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document} are positive, while the others are negative. The results indicate that the effects of the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment and HM on FSTC are mainly reflected in αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document} and αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, which are the dominant factors when the neutron spectrum is relatively hard. Furthermore, the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment influences FSTC by αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document} and αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}, which are the key factors in a relative soft spectrum. In order to obtain a more negative FSTC for an under-moderated MSR, the possible positive density coefficient, especially its αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, should be suppressed. Thus, a lower 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment (albeit higher than a certain value, 5 wt% in this article) along with a lower HM proportion and/or a higher 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment are recommended. The analyses provide an approach to achieve a more suitable fuel salt composition with a sufficiently negative FSTC.
引用
收藏
相关论文
共 50 条
  • [21] Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt
    Zhang Da-Lin
    Qiu Sui-Zheng
    Liu Chang-Liang
    Su Guang-Hui
    CHINESE PHYSICS C, 2008, 32 (08) : 624 - 628
  • [22] Influences of reprocessing separation efficiency on the fuel cycle performances for a Heavy Water moderated Molten Salt Reactor
    Wu, Jianhui
    Yu, Chenggang
    Zou, Chunyan
    Jia, Guobin
    Cai, Xiangzhou
    Chen, Jingen
    NUCLEAR ENGINEERING AND DESIGN, 2021, 380
  • [23] Influence of the processing and salt composition on the thorium molten salt reactor
    Merle-Lucotte, Elsa
    Mathieu, Ludovic
    Heuer, Daniel
    Ghetta, Veronique
    Brissot, Roger
    Le Brun, Christian
    Liatard, Eric
    NUCLEAR TECHNOLOGY, 2008, 163 (03) : 358 - 365
  • [24] Reactor protection system testing for the solid fuel thorium molten salt reactor
    Liu, Zhen-Bao
    Liu, Ye
    Liu, Gui-Min
    Hou, Jie
    NUCLEAR SCIENCE AND TECHNIQUES, 2016, 27 (05)
  • [25] Reactor protection system testing for the solid fuel thorium molten salt reactor
    Zhen-Bao Liu
    Ye Liu
    Gui-Min Liu
    Jie Hou
    Nuclear Science and Techniques, 2016, 27 (05) : 154 - 162
  • [26] Reactor protection system testing for the solid fuel thorium molten salt reactor
    Zhen-Bao Liu
    Ye Liu
    Gui-Min Liu
    Jie Hou
    Nuclear Science and Techniques, 2016, 27
  • [27] The molten salt reactor (MSR) in generation IV: Overview and perspectives
    Serp, Jerome
    Allibert, Michel
    Benes, Ondrej
    Delpech, Sylvie
    Feynberg, Olga
    Ghetta, Veronique
    Heuer, Daniel
    Holcomb, David
    Ignatiev, Victor
    Kloosterman, Jan Leen
    Luzzi, Lelio
    Merle-Lucotte, Elsa
    Uhlir, Jan
    Yoshioka, Ritsuo
    Dai Zhimin
    PROGRESS IN NUCLEAR ENERGY, 2014, 77 : 308 - 319
  • [29] Reliability analysis and optimization of core fuel salt emergency drain system for the molten salt reactor experiment
    Liang R.
    Sun L.
    Jiao X.
    Wang C.
    Yang Q.
    Yu X.
    He Jishu/Nuclear Techniques, 2023, 46 (03):
  • [30] Passive residual heat removal characteristics of liquid fuel molten salt reactor salt drain tank
    Qu P.
    Zhou C.
    Wang N.
    Zou Y.
    Wang S.
    He Jishu/Nuclear Techniques, 2023, 46 (05):