Effects of fuel salt composition on fuel salt temperature coefficient (FSTC) for an under-moderated molten salt reactor (MSR)

被引:0
|
作者
Xiao-Xiao Li
Yu-Wen Ma
Cheng-Gang Yu
Chun-Yan Zou
Xiang-Zhou Cai
Jin-Gen Chen
机构
[1] Chinese Academy of Sciences,Shanghai Institute of Applied Physics
[2] Chinese Academy of Sciences,CAS Innovative Academies in TMSR Energy System
[3] University of Chinese Academy of Sciences,undefined
来源
Nuclear Science and Techniques | 2018年 / 29卷
关键词
Molten salt reactor (MSR); Fuel salt temperature coefficient (FSTC); Six-factor formula;
D O I
暂无
中图分类号
学科分类号
摘要
With respect to a liquid-fueled molten salt reactor (MSR), the temperature coefficient of reactivity mainly includes the moderator temperature coefficient (MTC) and the fuel salt temperature coefficient (FSTC). The FSTC is typically divided into the Doppler coefficient and the density coefficient. In order to compensate for the potentially positive MTC, the FSTC should be sufficiently negative, and this is mostly optimized in terms of the geometry aspect in pioneering studies. However, the properties of fuel salt also directly influence the FSTC. Thus, the effects of different fuel salt compositions including the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment, heavy metal proportion in salt phase (HM proportion), and the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment on FSTC are investigated from the viewpoint of the essential six-factor formula. The analysis is based on an under-moderated MSR. With respect to the Doppler coefficient, the temperature coefficient of the fast fission factors (αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document}) is positive and those of the resonance escape probability (αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}), thermal reproduction factor (αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document}), thermal utilization factor (αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document}), and total non-leakage probability (αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}) are negative. With respect to the density coefficient, αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document} and αT(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\eta )$$\end{document} are positive, while the others are negative. The results indicate that the effects of the 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment and HM on FSTC are mainly reflected in αT(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varepsilon )$$\end{document} and αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, which are the dominant factors when the neutron spectrum is relatively hard. Furthermore, the 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment influences FSTC by αT(f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(f )$$\end{document} and αT(Λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(\varLambda )$$\end{document}, which are the key factors in a relative soft spectrum. In order to obtain a more negative FSTC for an under-moderated MSR, the possible positive density coefficient, especially its αT(p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\text {T}}(p )$$\end{document}, should be suppressed. Thus, a lower 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U enrichment (albeit higher than a certain value, 5 wt% in this article) along with a lower HM proportion and/or a higher 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{7}$$\end{document}Li enrichment are recommended. The analyses provide an approach to achieve a more suitable fuel salt composition with a sufficiently negative FSTC.
引用
收藏
相关论文
共 50 条
  • [1] Effects of fuel salt composition on fuel salt temperature coefficient(FSTC) for an under-moderated molten salt reactor(MSR)
    Xiao-Xiao Li
    Yu-Wen Ma
    Cheng-Gang Yu
    Chun-Yan Zou
    Xiang-Zhou Cai
    Jin-Gen Chen
    NuclearScienceandTechniques, 2018, 29 (08) : 75 - 84
  • [2] Effects of fuel salt composition on fuel salt temperature coefficient (FSTC) for an under-moderated molten salt reactor (MSR)
    Li, Xiao-Xiao
    Ma, Yu-Wen
    Yu, Cheng-Gang
    Zou, Chun-Yan
    Cai, Xiang-Zhou
    Chen, Jin-Gen
    NUCLEAR SCIENCE AND TECHNIQUES, 2018, 29 (08)
  • [3] Fuel Salt for the Molten-Salt Reactor
    Ponomarev, L. I.
    Seregin, M. B.
    Parshin, A. P.
    Mel'nikov, S. A.
    Mikhalichenko, A. A.
    Zagorets, L. P.
    Manuilov, R. N.
    Rzheutskii, A. A.
    ATOMIC ENERGY, 2013, 115 (01) : 5 - 10
  • [4] Fuel Salt for the Molten-Salt Reactor
    L. I. Ponomarev
    M. B. Seregin
    A. P. Parshin
    S. A. Mel’nikov
    A. A. Mikhalichenko
    L. P. Zagorets
    R. N. Manuilov
    A. A. Rzheutskii
    Atomic Energy, 2013, 115 : 5 - 10
  • [5] Chemistry of the molten salt reactor fuel
    Benes, Ondrej
    Soucek, Pavel
    Konings, Rudy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [6] Liquid fueled molten salt reactor fuel salt composition evolution and implications for operations and performance
    Betzler, Benjamin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] Parametric Study of Natural Circulation Flow in Molten Salt Fuel in Molten Salt Reactor
    Pauzi, Anas Muhamad
    Cioncolini, Andrea
    Iacovides, Hector
    ADVANCING OF NUCLEAR SCIENCE AND ENERGY FOR NATIONAL DEVELOPMENT, 2015, 1659
  • [8] MOLTEN SALT REACTOR WITH SIMPLIFIED FUEL RECYCLING AND DELAYED CARRIER SALT CLEANING
    Krepel, Jiri
    Hombourger, Boris
    Bykov, Valentyn
    Fiorina, Carlo
    Mikityuk, Konstantin
    Pautz, Andreas
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2014, VOL 3, 2014,
  • [9] Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor
    Zou, C. Y.
    Cai, X. Z.
    Jiang, D. Z.
    Yu, C. G.
    Li, X. X.
    Ma, Y. W.
    Han, J. L.
    Chen, J. G.
    NUCLEAR ENGINEERING AND DESIGN, 2015, 281 : 114 - 120
  • [10] Fuel depletion study of the molten salt demonstration reactor
    Creasman, Sarah Elizabeth
    Harrison, T. Jay
    Heilbronn, Lawrence H.
    NUCLEAR ENGINEERING AND DESIGN, 2024, 418