Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method

被引:0
|
作者
Kourosh Parand
Mehran Nikarya
Jamal Amani Rad
机构
[1] Shahid Beheshti University,Department of Computer Sciences, Faculty of Mathematical Sciences
关键词
Orthogonal Bessel function; Lane–Emden type equations ; Collocation method; Non-linear ODE; Isothermal gas sphere equation;
D O I
暂无
中图分类号
学科分类号
摘要
The Lane–Emden type equations are employed in the modeling of several phenomena in the areas of mathematical physics and astrophysics. These equations are categorized as non-linear singular ordinary differential equations on the semi-infinite domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}. In this research we introduce the Bessel orthogonal functions as new basis for spectral methods and also, present an efficient numerical algorithm based on them and collocation method for solving these well-known equations. We compare the obtained results with other results to verify the accuracy and efficiency of the presented scheme. To obtain the orthogonal Bessel functions we need their roots. We use the algorithm presented by Glaser et al. (SIAM J Sci Comput 29:1420–1438, 2007) to obtain the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} roots of Bessel functions.
引用
收藏
页码:97 / 107
页数:10
相关论文
共 50 条
  • [41] Numerical Solutions of Linear and Nonlinear Lane-Emden Type Equations Magnus Expansion Method
    Kome, Cahit
    Atay, Mehmet Tarik
    Eryilmaz, Aytekin
    Kome, Sure
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [42] A METHOD OF SOLVING NON-LINEAR EQUATIONS, USING A PRIORI PROBABILITY ESTIMATES OF THE ROOTS
    VYSOTSKAYA, IN
    STRONGIN, RG
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1983, 23 (01): : 1 - 7
  • [43] The simplest equation approach for solving non-linear Tzitzeica type equations in non-linear optics
    Zafar, Asim
    Rezazadeh, Hadi
    Reazzaq, Waseem
    Bekir, Ahmet
    MODERN PHYSICS LETTERS B, 2021, 35 (07):
  • [44] Solving the Systems of Equations of Lane-Emden Type by Differential Transform Method Coupled with Adomian Polynomials
    Xie, Lie-jun
    Zhou, Cai-lian
    Xu, Song
    MATHEMATICS, 2019, 7 (04):
  • [45] A new analytical technique for solving Lane - Emden type equations arising in astrophysics
    Deniz, Sinan
    Bildik, Necdet
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2017, 24 (02) : 305 - 320
  • [46] A neural network approach for solving nonlinear differential equations of Lane–Emden type
    K. Parand
    A. A. Aghaei
    S. Kiani
    T. Ilkhas Zadeh
    Z. Khosravi
    Engineering with Computers, 2024, 40 : 953 - 969
  • [47] NEW GALERKIN OPERATIONAL MATRICES FOR SOLVING LANE-EMDEN TYPE EQUATIONS
    Abd-Elhameed, W. M.
    Doha, E. H.
    Saad, A. S.
    Bassuony, M. A.
    REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 2016, 52 (01) : 83 - 92
  • [48] Application of a new hybrid method for solving singular fractional Lane-Emden-type equations in astrophysics
    Ma, Wen-Xiu
    Mousa, Mohamed M.
    Ali, Mohamed R.
    MODERN PHYSICS LETTERS B, 2020, 34 (03):
  • [49] An operational matrix method for solving Lane-Emden equations arising in astrophysics
    Ozturk, Yalcin
    Gulsu, Mustafa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (15) : 2227 - 2235
  • [50] ON A CERTAIN METHOD OF SOLVING NON-LINEAR DIFFERENTIAL-EQUATIONS
    KALINOWSKI, MW
    LETTERS IN MATHEMATICAL PHYSICS, 1982, 6 (01) : 17 - 30