Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method

被引:0
|
作者
Kourosh Parand
Mehran Nikarya
Jamal Amani Rad
机构
[1] Shahid Beheshti University,Department of Computer Sciences, Faculty of Mathematical Sciences
关键词
Orthogonal Bessel function; Lane–Emden type equations ; Collocation method; Non-linear ODE; Isothermal gas sphere equation;
D O I
暂无
中图分类号
学科分类号
摘要
The Lane–Emden type equations are employed in the modeling of several phenomena in the areas of mathematical physics and astrophysics. These equations are categorized as non-linear singular ordinary differential equations on the semi-infinite domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}. In this research we introduce the Bessel orthogonal functions as new basis for spectral methods and also, present an efficient numerical algorithm based on them and collocation method for solving these well-known equations. We compare the obtained results with other results to verify the accuracy and efficiency of the presented scheme. To obtain the orthogonal Bessel functions we need their roots. We use the algorithm presented by Glaser et al. (SIAM J Sci Comput 29:1420–1438, 2007) to obtain the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} roots of Bessel functions.
引用
收藏
页码:97 / 107
页数:10
相关论文
共 50 条