Solving non-linear Lane–Emden type equations using Bessel orthogonal functions collocation method

被引:0
|
作者
Kourosh Parand
Mehran Nikarya
Jamal Amani Rad
机构
[1] Shahid Beheshti University,Department of Computer Sciences, Faculty of Mathematical Sciences
关键词
Orthogonal Bessel function; Lane–Emden type equations ; Collocation method; Non-linear ODE; Isothermal gas sphere equation;
D O I
暂无
中图分类号
学科分类号
摘要
The Lane–Emden type equations are employed in the modeling of several phenomena in the areas of mathematical physics and astrophysics. These equations are categorized as non-linear singular ordinary differential equations on the semi-infinite domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}. In this research we introduce the Bessel orthogonal functions as new basis for spectral methods and also, present an efficient numerical algorithm based on them and collocation method for solving these well-known equations. We compare the obtained results with other results to verify the accuracy and efficiency of the presented scheme. To obtain the orthogonal Bessel functions we need their roots. We use the algorithm presented by Glaser et al. (SIAM J Sci Comput 29:1420–1438, 2007) to obtain the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} roots of Bessel functions.
引用
收藏
页码:97 / 107
页数:10
相关论文
共 50 条
  • [21] The Numerical Method for Solving Differential Equations of Lane-Emden Type by Pade Approximation
    Yigider, Muhammed
    Tabatabaei, Khatereh
    Celik, Ercan
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [22] A collocation method for solving non-linear optimal control problems
    Elnagar, GN
    Li, KS
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS, 1999, 5 (1-4): : 67 - 79
  • [23] A METHOD OF SOLVING NON-LINEAR FUNCTIONAL EQUATIONS
    KURCHATO.VA
    DOKLADY AKADEMII NAUK SSSR, 1969, 189 (02): : 247 - &
  • [24] A Nonclassical Radau Collocation Method for Solving the Lane-Emden Equations of the Polytropic Index 4.75 ≤ α < 5
    Tirani, M. D.
    Maleki, M.
    Kajani, M. T.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS '14), 2014, 1629 : 387 - 393
  • [25] Solution of Lane-Emden type equations using rational Bernoulli functions
    Calvert, Velinda
    Mashayekhi, Somayeh
    Razzaghi, Mohsen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (05) : 1268 - 1284
  • [26] A Domain Decomposition Based Spectral Collocation Method for Lane-Emden Equations
    Guo, Yuling
    Huang, Jianguo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 22 (02) : 542 - 571
  • [27] Numerical Solution to Singular Ordinary Differential Equations of Lane-Emden Type By Legendre Collocation Method
    Zhao, T. G.
    Wu, Y.
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIAL ENGINEERING AND APPLICATION (ICMEA 2016), 2016, 103 : 496 - 501
  • [28] COLLOCATION SOLUTION OF NON-LINEAR DIFFERENTIAL-EQUATIONS BY SPLINE FUNCTIONS
    KRAMARZ, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (03): : 163 - 163
  • [29] Application of orthogonal collocation on finite elements for solving non-linear boundary value problems
    Arora, Shelly
    Dhaliwal, S. S.
    Kukreja, V. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (02) : 516 - 523
  • [30] Solving the Lane-Emden-Fowler Type Equations of Higher Orders by the Adomian Decomposition Method
    Wazwaz, Abdul-Majid
    Rach, Randolph
    Bougoffa, Lazhar
    Duan, Jun-Sheng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 100 (06): : 507 - 529