Low rank representations for quantum simulation of electronic structure

被引:0
|
作者
Mario Motta
Erika Ye
Jarrod R. McClean
Zhendong Li
Austin J. Minnich
Ryan Babbush
Garnet Kin-Lic Chan
机构
[1] California Institute of Technology,Division of Chemistry and Chemical Engineering
[2] California Institute of Technology,Division of Engineering and Applied Sciences
[3] Google Inc.,Key Laboratory of Theoretical and Computational Photochemistry
[4] Ministry of Education,undefined
[5] College of Chemistry,undefined
[6] Beijing Normal University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The quantum simulation of quantum chemistry is a promising application of quantum computers. However, for N molecular orbitals, the O(N4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{4})$$\end{document} gate complexity of performing Hamiltonian and unitary Coupled Cluster Trotter steps makes simulation based on such primitives challenging. We substantially reduce the gate complexity of such primitives through a two-step low-rank factorization of the Hamiltonian and cluster operator, accompanied by truncation of small terms. Using truncations that incur errors below chemical accuracy allow one to perform Trotter steps of the arbitrary basis electronic structure Hamiltonian with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity in small simulations, which reduces to O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} gate complexity in the asymptotic regime; and unitary Coupled Cluster Trotter steps with O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} gate complexity as a function of increasing basis size for a given molecule. In the case of the Hamiltonian Trotter step, these circuits have O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{2})$$\end{document} depth on a linearly connected array, an improvement over the O(N3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{O}}({N}^{3})$$\end{document} scaling assuming no truncation. As a practical example, we show that a chemically accurate Hamiltonian Trotter step for a 50 qubit molecular simulation can be carried out in the molecular orbital basis with as few as 4000 layers of parallel nearest-neighbor two-qubit gates, consisting of fewer than 105 non-Clifford rotations. We also apply our algorithm to iron–sulfur clusters relevant for elucidating the mode of action of metalloenzymes.
引用
收藏
相关论文
共 50 条
  • [1] Low rank representations for quantum simulation of electronic structure
    Motta, Mario
    Ye, Erika
    McClean, Jarrod R.
    Li, Zhendong
    Minnich, Austin J.
    Babbush, Ryan
    Chan, Garnet Kin-Lic
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Simulation of quantum circuits by low-rank stabilizer decompositions
    Bravyi, Sergey
    Browne, Dan
    Calpin, Padraic
    Campbell, Earl
    Gosset, David
    Howard, Mark
    QUANTUM, 2019, 3
  • [3] Simulation of electronic structure Hamiltonians using quantum computers
    Whitfield, James D.
    Biamonte, Jacob
    Aspuru-Guzik, Alan
    MOLECULAR PHYSICS, 2011, 109 (05) : 735 - 750
  • [4] Quantum Simulation of Electronic Structure with Linear Depth and Connectivity
    Kivlichan, Ian D.
    McClean, Jarrod
    Wiebe, Nathan
    Gidney, Craig
    Aspuru-Guzik, Alan
    Chan, Garnet Kin-Lic
    Babbush, Ryan
    PHYSICAL REVIEW LETTERS, 2018, 120 (11)
  • [5] Denoising by low-rank and sparse representations
    Nejati, Mansour
    Samavi, Shadrokh
    Derksen, Harm
    Najarian, Kayvan
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 36 : 28 - 39
  • [6] LOW-RANK REPRESENTATIONS OF THE SYMPLECTIC GROUP
    MOEGLIN, C
    VIGNERAS, MF
    WALDSPURGER, JL
    LECTURE NOTES IN MATHEMATICS, 1987, 1291 : 127 - 161
  • [7] Ordering of Trotterization: Impact on Errors in Quantum Simulation of Electronic Structure
    Tranter, Andrew
    Love, Peter J.
    Mintert, Florian
    Wiebe, Nathan
    Coveney, Peter V.
    ENTROPY, 2019, 21 (12)
  • [8] QUANTUM SIMULATION OF THE ELECTRONIC-STRUCTURE OF DIATOMIC-MOLECULES
    SUBRAMANIAM, RP
    LEE, MA
    SCHMIDT, KE
    MOSKOWITZ, JW
    JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04): : 2600 - 2608
  • [9] Adversarial robustness via robust low rank representations
    Awasthi, Pranjal
    Jain, Himanshu
    Rawat, Ankit Singh
    Vijayaraghavan, Aravindan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [10] Low rank mechanisms underlying flexible visual representations
    Ruff, Douglas A.
    Xue, Cheng
    Kramer, Lily E.
    Baqai, Faisal
    Cohen, Marlene R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (47) : 29321 - 29329