Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values

被引:0
|
作者
Ling Mi
机构
[1] Linyi University,School of Mathematics and Statistics
来源
关键词
-Laplacian problems; Second expansion of solutions; Upper and lower solutions; Karamata regular variation theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by using Karamata regular variation theory and the method of upper and lower solutions, we mainly study the second order expansion of solutions to the following p-Laplacian problems: Δpu=b(x)f(u),u>0,x∈Ω,u|∂Ω=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{p} u=b(x)f(u), u>0, x\in \varOmega, u|_{\partial \varOmega }=\infty $\end{document}, where Ω is a bounded domain with smooth boundary in RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N} (N\geq 2)$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, b∈Cα(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b \in C^{\alpha }(\bar{\varOmega })$\end{document} which is positive in Ω and may be vanishing on the boundary. The absorption term f is normalized regularly varying at infinity with index σ>p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma >p-1$\end{document}. The results extend some previous findings of D. Repovš (J. Math. Anal. Appl. 395:78-85, 2012) in a certain sense.
引用
收藏
相关论文
共 50 条
  • [41] SOLVABILITY OF A FRACTIONAL BOUNDARY VALUE PROBLEM WITH P-LAPLACIAN OPERATOR ON AN INFINITE INTERVAL
    Feng, Xingfang
    Li, Yucheng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (06): : 3087 - 3106
  • [42] A free boundary problem for the p-Laplacian with nonlinear boundary conditions
    Acampora, P.
    Cristoforoni, E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) : 1 - 20
  • [43] Behaviour of solutions to p-Laplacian with Robin boundary conditions as p goes to 1
    Della Pietra, Francesco
    Oliva, Francescantonio
    Segura de Leon, Sergio
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (01) : 105 - 130
  • [44] On the p-Laplacian with Robin boundary conditions and boundary trace theorems
    Kovarik, Hynek
    Pankrashkin, Konstantin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
  • [45] A free boundary problem for the p-Laplacian with nonlinear boundary conditions
    P. Acampora
    E. Cristoforoni
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 1 - 20
  • [46] On the p-Laplacian with Robin boundary conditions and boundary trace theorems
    Hynek Kovařík
    Konstantin Pankrashkin
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [47] MULTIPLE POSITIVE SOLUTIONS FOR SINGULAR BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN
    Wu Zheng~(1
    2.Dept.of Basic Course
    Annals of Differential Equations, 2007, (04) : 519 - 524
  • [48] Positive Solutions of Singular Fractional Boundary Value Problem with p-Laplacian
    Ji, Dehong
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 249 - 263
  • [49] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    I. Merzoug
    A. Guezane-Lakoud
    R. Khaldi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1099 - 1106
  • [50] Positive solutions to mixed fractional p-Laplacian boundary value problems
    Guezane-Lakoud, Assia
    Rodriguez-Lopez, Rosana
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 49 - 58