Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values

被引:0
|
作者
Ling Mi
机构
[1] Linyi University,School of Mathematics and Statistics
来源
关键词
-Laplacian problems; Second expansion of solutions; Upper and lower solutions; Karamata regular variation theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by using Karamata regular variation theory and the method of upper and lower solutions, we mainly study the second order expansion of solutions to the following p-Laplacian problems: Δpu=b(x)f(u),u>0,x∈Ω,u|∂Ω=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{p} u=b(x)f(u), u>0, x\in \varOmega, u|_{\partial \varOmega }=\infty $\end{document}, where Ω is a bounded domain with smooth boundary in RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N} (N\geq 2)$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, b∈Cα(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b \in C^{\alpha }(\bar{\varOmega })$\end{document} which is positive in Ω and may be vanishing on the boundary. The absorption term f is normalized regularly varying at infinity with index σ>p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma >p-1$\end{document}. The results extend some previous findings of D. Repovš (J. Math. Anal. Appl. 395:78-85, 2012) in a certain sense.
引用
收藏
相关论文
共 50 条