In this paper, by using Karamata regular variation theory and the method of upper and lower solutions, we mainly study the second order expansion of solutions to the following p-Laplacian problems: Δpu=b(x)f(u),u>0,x∈Ω,u|∂Ω=∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Delta _{p} u=b(x)f(u), u>0, x\in \varOmega, u|_{\partial \varOmega }=\infty $\end{document}, where Ω is a bounded domain with smooth boundary in RN(N≥2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\mathbb{R}^{N} (N\geq 2)$\end{document}, p>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$p>1$\end{document}, b∈Cα(Ω¯)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$b \in C^{\alpha }(\bar{\varOmega })$\end{document} which is positive in Ω and may be vanishing on the boundary. The absorption term f is normalized regularly varying at infinity with index σ>p−1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\sigma >p-1$\end{document}. The results extend some previous findings of D. Repovš (J. Math. Anal. Appl. 395:78-85, 2012) in a certain sense.