Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values

被引:0
|
作者
Ling Mi
机构
[1] Linyi University,School of Mathematics and Statistics
来源
关键词
-Laplacian problems; Second expansion of solutions; Upper and lower solutions; Karamata regular variation theory;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by using Karamata regular variation theory and the method of upper and lower solutions, we mainly study the second order expansion of solutions to the following p-Laplacian problems: Δpu=b(x)f(u),u>0,x∈Ω,u|∂Ω=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta _{p} u=b(x)f(u), u>0, x\in \varOmega, u|_{\partial \varOmega }=\infty $\end{document}, where Ω is a bounded domain with smooth boundary in RN(N≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N} (N\geq 2)$\end{document}, p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p>1$\end{document}, b∈Cα(Ω¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b \in C^{\alpha }(\bar{\varOmega })$\end{document} which is positive in Ω and may be vanishing on the boundary. The absorption term f is normalized regularly varying at infinity with index σ>p−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma >p-1$\end{document}. The results extend some previous findings of D. Repovš (J. Math. Anal. Appl. 395:78-85, 2012) in a certain sense.
引用
收藏
相关论文
共 50 条
  • [21] Existence and boundary behavior of solutions to p-Laplacian elliptic equations
    Mi, Ling
    BOUNDARY VALUE PROBLEMS, 2016,
  • [22] Solutions to Neumann boundary value problems with a generalized p-Laplacian
    Szymanska-Debowska, Katarzyna
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (04) : 629 - 636
  • [23] Boundary behavior of large solutions to p-Laplacian elliptic equations
    Zhang, Zhijun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 33 : 40 - 57
  • [24] POSITIVE SOLUTIONS FOR A SYSTEM OF p-LAPLACIAN BOUNDARY VALUE PROBLEMS
    Xu, Jiafa
    O'regan, Donal
    Zhang, Keyu
    FIXED POINT THEORY, 2018, 19 (02): : 823 - 836
  • [25] Asymptotic estimates of the first eigenvalue of the p-Laplacian
    Colbois, B
    Matei, AM
    ADVANCED NONLINEAR STUDIES, 2003, 3 (02) : 207 - 217
  • [26] The stability of the solutions of an equation related to the p-Laplacian with degeneracy on the boundary
    Zhan, Huashui
    BOUNDARY VALUE PROBLEMS, 2016,
  • [27] Multiple Solutions for the Discrete p-Laplacian Boundary Value Problems
    Long, Yuhua
    Shi, Haiping
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [28] Positive solutions for discrete boundary value problems with p-Laplacian
    Ji, Dehong
    Ge, Weigao
    JOURNAL OF APPLIED ANALYSIS, 2010, 16 (01) : 107 - 119
  • [29] POSITIVE SOLUTIONS OF p-LAPLACIAN EQUATIONS WITH NONLINEAR BOUNDARY CONDITION
    Yang, Zuodong
    Mo, Jing
    Li, Subei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (02): : 623 - 636
  • [30] Multiplicity of solutions for a p-Laplacian equation with nonlinear boundary conditions
    Zivari-Rezapour, Mohsen
    Jalalvand, Mehdi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (03): : 475 - 479