Simulation of crack propagation in rock in plasma blasting technology

被引:0
|
作者
V.R. Ikkurthi
K. Tahiliani
S. Chaturvedi
机构
[1] Institute for Plasma Research,
[2] Bhat,undefined
[3] Gandhinagar-382 428,undefined
[4] Gujarat,undefined
[5] India ,undefined
来源
Shock Waves | 2002年 / 12卷
关键词
Key words: Plasma blasting technology, Brittle fracture, Crack propagation; PACS: 46.50.+a, 47.11.+j, 47.40.-x, 52.50.Lp, 64.30.+t;
D O I
暂无
中图分类号
学科分类号
摘要
Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document}, we have determined the P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document} curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document}. We have determined the E-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [41] Initiation and propagation of mode I crack under blasting
    Liu R.
    Zhu Z.
    Li M.
    Liu B.
    Zhu, Zheming (zhemingzhu@hotmail.com), 2018, Academia Sinica (37): : 392 - 402
  • [42] Analysis and numerical simulation of hydrofracture crack propagation in coal-rock bed
    State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing
    400030, China
    CMES Comput. Model. Eng. Sci., 1 (69-86):
  • [43] Crack propagation simulation of rock-like specimen using strain criterion
    Zhao, Cheng
    Ma, Chuangchuang
    Zhao, Chunfeng
    Du, Shigui
    Bao, Chong
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2018, 22 : s228 - s245
  • [44] Analysis and Numerical Simulation of Hydrofracture Crack Propagation in Coal-Rock Bed
    Lu, Yiyu
    Song, Chenpeng
    Jia, Yunzhong
    Xia, Binwei
    Ge, Zhaolong
    Tang, Jiren
    Li, Qian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 105 (01): : 69 - 86
  • [45] Finite Element Analysis for the Mechanism of Stress Wave Propagation and Crack Extension Due to Blasting of a Frozen Rock Mass
    Wang, Tingting
    Li, Pingfeng
    Tang, Chun'an
    Zhang, Bingbing
    Yu, Jiang
    SUSTAINABILITY, 2023, 15 (05)
  • [46] Numerical Simulation of 3D Crack Propagation in Rock by Peridynamics Approach
    Cui H.
    Zheng H.
    Li C.
    Han Y.
    Tongji Daxue Xuebao/Journal of Tongji University, 2022, 50 (09): : 1223 - 1231
  • [47] OPTIMIZATION OF PIT BLASTING AND COMPUTER SIMULATION OF ROCK BLASTING PROCESS.
    Zou Dingxiang
    Yu Se Chin Shu/Nonferrous Metals, 1984, 36 (01): : 26 - 31
  • [48] Effect of crack length on mode I crack propagation under blasting loads
    Liu, Ruifeng
    Du, Yumei
    Zhu, Zheming
    Zhou, Changlin
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2022, 118
  • [49] Crack propagation of jointed rock and application
    Wang, Qinghan
    Li, Shucai
    Li, Liping
    Wang, Jing
    Zhang, Qian
    MATERIAL SCIENCE, CIVIL ENGINEERING AND ARCHITECTURE SCIENCE, MECHANICAL ENGINEERING AND MANUFACTURING TECHNOLOGY II, 2014, 651-653 : 1143 - 1146
  • [50] Crack propagation of jointed rock and application
    Wang Jing
    Zhu Weishen
    Ma Haiping
    MATERIALS AND COMPUTATIONAL MECHANICS, PTS 1-3, 2012, 117-119 : 476 - 479