Simulation of crack propagation in rock in plasma blasting technology

被引:0
|
作者
V.R. Ikkurthi
K. Tahiliani
S. Chaturvedi
机构
[1] Institute for Plasma Research,
[2] Bhat,undefined
[3] Gandhinagar-382 428,undefined
[4] Gujarat,undefined
[5] India ,undefined
来源
Shock Waves | 2002年 / 12卷
关键词
Key words: Plasma blasting technology, Brittle fracture, Crack propagation; PACS: 46.50.+a, 47.11.+j, 47.40.-x, 52.50.Lp, 64.30.+t;
D O I
暂无
中图分类号
学科分类号
摘要
Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document}, we have determined the P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document} curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document}. We have determined the E-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [21] Study of the Rock Crack Propagation Induced by Blasting with a Decoupled Charge under High In Situ Stress
    Li, Xudong
    Liu, Kewei
    Yang, Jiacai
    ADVANCES IN CIVIL ENGINEERING, 2020, 2020
  • [22] Numerical simulation on crack propagation of coal bed deep-hole cumulative blasting
    Guo, D.-Y. (kjkfg@cumtb.edu.cn), 1600, China Coal Society (37):
  • [23] A study on crack propagation and stress wave propagation in different blasting modes of shaped energy blasting
    Liang H.
    Guo P.
    Sun D.
    Ye K.
    Zou B.
    Yuan Y.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (04): : 157 - 164and184
  • [24] Influence of rock properties on blasting vibration propagation
    Yu, Yan-Ning (yuyanning123@foxmail.com), 2016, Taru Publications (64):
  • [25] Rock blasting technology: The way forward
    Sastry, V. R.
    PROCEEDINGS OF THE CONFERENCE ON RECENT ADVANCES IN ROCK ENGINEERING (RARE 2016), 2016, 91 : 606 - 611
  • [26] Simulation of rock crack propagation using discontinuous deformation analysis method
    Jiao, Yuyong
    Zhang, Xiuli
    Liu, Quansheng
    Chen, Weizhong
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (04): : 682 - 691
  • [27] Extended finite element simulation of crack propagation in fractured rock masses
    Zhang, Y. L.
    Feng, X. T.
    MATERIALS RESEARCH INNOVATIONS, 2011, 15 : S594 - S596
  • [28] Numerical simulation on the propagation of single crack in rock under the condition of unloading
    Zhu, Di-Jie
    Chen, Zhong-Hui
    Xi, Jing-Yi
    Yang, Deng-Feng
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2015, 36 : 208 - 211
  • [29] Study of rock dynamic fracture toughness and crack propagation parameters of four brittle materials under blasting
    Liu, Ruifeng
    Zhu, Zheming
    Li, Yexue
    Liu, Bang
    Wan, Duanying
    Li, Meng
    ENGINEERING FRACTURE MECHANICS, 2020, 225 (225)
  • [30] Mathematical modeling of blasting and analysis of crack propagation in fractured and faulty rock by PFC-3D
    Khurshid, Ilyas
    Siraj-ul-Islam
    Mohammad, Noor
    JOURNAL OF HIMALAYAN EARTH SCIENCES, 2010, 43 : 51 - 51