Simulation of crack propagation in rock in plasma blasting technology

被引:0
|
作者
V.R. Ikkurthi
K. Tahiliani
S. Chaturvedi
机构
[1] Institute for Plasma Research,
[2] Bhat,undefined
[3] Gandhinagar-382 428,undefined
[4] Gujarat,undefined
[5] India ,undefined
来源
Shock Waves | 2002年 / 12卷
关键词
Key words: Plasma blasting technology, Brittle fracture, Crack propagation; PACS: 46.50.+a, 47.11.+j, 47.40.-x, 52.50.Lp, 64.30.+t;
D O I
暂无
中图分类号
学科分类号
摘要
Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document}, we have determined the P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document} curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document}. We have determined the E-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [31] Study on energy evolution and crack propagation of rock mass under single hole uncoupled charge blasting
    Ma, Tianhui
    Li, Fujie
    Yang, Yuhao
    Li, Limin
    APPLICATIONS IN ENGINEERING SCIENCE, 2022, 11
  • [32] Numerical study on crack propagation of rock mass using the time sequence controlled and notched blasting method
    Li, Xinping
    Xu, Mingnan
    Wang, Yang
    Wang, Gang
    Huang, Junhong
    Yin, Weisong
    Yan, Ge
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2021, 26 (13) : 6714 - 6732
  • [33] Rock Blasting Crack Propagation and Dynamic Response of Adjacent Roadway Structure under Active Confining Pressure
    Mao, Xiang
    He, Chenglong
    Chen, Dayong
    Yang, Kexu
    Huo, Ziyi
    Binggong Xuebao/Acta Armamentarii, 2024, 45 (12): : 4323 - 4338
  • [34] Rock fragmentation with plasma blasting method
    Lee, KW
    Ryu, CH
    Synn, JH
    Park, C
    ENVIRONMENTAL AND SAFETY CONCERNS IN UNDERGROUND CONSTRUCTION, VOLS, 1 AND 2, 1997, : 147 - 152
  • [35] Numerical simulation on crack propagation of rock mass with a single crack under seepage water pressure
    Liu, Shiliang
    Li, Wenping
    Wang, Qiqing
    Wu, Zhiyong
    Yang, Zhi
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (10)
  • [36] Tests for blasting induced crack propagation characteristics of short-delay blasting
    Yang R.
    Ding C.
    Yang G.
    Yang L.
    Wang Y.
    Ding, Chenxi, 1600, Chinese Vibration Engineering Society (36): : 97 - 102
  • [37] Disturbance of blasting excavation on crack growth in rock slope
    Chen, Ming
    Guo, Tianyang
    Lu, Wenbo
    Xiao, Yanjun
    Yan, Peng
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (07): : 1307 - 1314
  • [38] A Numerical Simulation of Blasting Stress Wave Propagation in a Jointed Rock Mass under Initial Stresses
    Dong, Qian
    Li, Xinping
    Jia, Yongsheng
    Sun, Jinshan
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [39] Effect of Blasting Stress Wave on Dynamic Crack Propagation
    Liu, Huizhen
    Wan, Duanying
    Wang, Meng
    Zhu, Zheming
    Yang, Liyun
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (01): : 349 - 368
  • [40] Fractal damage and crack propagation in decoupled charge blasting
    Ding, Chenxi
    Yang, Renshu
    Lei, Zhen
    Wang, Meng
    Zhao, Yong
    Lin, Hai
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2021, 141