Simulation of crack propagation in rock in plasma blasting technology

被引:0
|
作者
V.R. Ikkurthi
K. Tahiliani
S. Chaturvedi
机构
[1] Institute for Plasma Research,
[2] Bhat,undefined
[3] Gandhinagar-382 428,undefined
[4] Gujarat,undefined
[5] India ,undefined
来源
Shock Waves | 2002年 / 12卷
关键词
Key words: Plasma blasting technology, Brittle fracture, Crack propagation; PACS: 46.50.+a, 47.11.+j, 47.40.-x, 52.50.Lp, 64.30.+t;
D O I
暂无
中图分类号
学科分类号
摘要
Plasma Blasting Technology (PBT) involves the production of a pulsed electrical discharge by inserting a blasting probe in a water-filled cavity drilled in a rock, which produces shocks or pressure waves in the water. These pulses then propagate into the rock, leading to fracture. In this paper, we present the results of two-dimensional hydrodynamic simulations using the SHALE code to study crack propagation in rock. Three separate issues have been examined. Firstly, assuming that a constant pressure P is maintained in the cavity for a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document}, we have determined the P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\tau$\end{document} curve that just cracks a given rock into at least two large-sized parts. This study shows that there exists an optimal pressure level for cracking a given rock-type and geometry. Secondly, we have varied the volume of water in which the initial energy E is deposited, which corresponds to different initial peak pressures \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document}. We have determined the E-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} curve that just breaks the rock into four large-sized parts. It is found that there must be an optimal \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P_{peak}$\end{document} that lowers the energy consumption, but with acceptable probe damage. Thirdly, we have attempted to identify the dominant mechanism of rock fracture. We also highlight some numerical errors that must be kept in mind in such simulations.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [1] Simulation of crack propagation in rock in plasma blasting technology
    Ikkurthi, VR
    Tahihani, K
    Chaturvedi, S
    SHOCK WAVES, 2002, 12 (02) : 145 - 152
  • [2] Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation
    Li Y.-Q.
    Liang Z.-Z.
    Qian X.-K.
    Liu H.-B.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (12): : 2057 - 2068
  • [3] Disturbance mechanism of blasting excavation to aquiferous rock crack propagation
    Chen Ming
    Lu Wen-bo
    Yan Peng
    Hu Ying-guo
    Zhou Chuang-bing
    ROCK AND SOIL MECHANICS, 2014, 35 (06) : 1555 - 1560
  • [4] Application of a synthetic rock mass approach to the simulation of blasting-induced crack propagation and coalescence in deep fractured rock
    Li, Xing
    Pan, Cheng
    Li, Xiaofeng
    Shao, Chengmeng
    Li, Haibo
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2022, 8 (02)
  • [5] Application of a synthetic rock mass approach to the simulation of blasting-induced crack propagation and coalescence in deep fractured rock
    Xing Li
    Cheng Pan
    Xiaofeng Li
    Chengmeng Shao
    Haibo Li
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8
  • [6] NUMERICAL STUDY ON CRACK PROPAGATION AND STRESS WAVE PROPAGATION DURING BLASTING OF JOINTED ROCK MASS
    Zhou W.
    Hu C.
    Bao J.
    Zheng J.
    Liang R.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (09): : 2501 - 2512
  • [7] Peridynamics simulating of dynamics crack propagation in rock mass under blasting load
    Li, Liping
    Chen, Xiaochu
    Gao, Chenglu
    Zhou, Zongqing
    Li, Minghao
    Zhang, Daosheng
    Chen, Jinbo
    SIMULATION MODELLING PRACTICE AND THEORY, 2025, 140
  • [8] Numerical simulation of dynamic cracks propagation of rock under blasting loading
    Zhong B.
    Li H.
    Zhang Y.
    1600, Explosion and Shock Waves (36): : 825 - 831
  • [9] Rate-dependent constitutive modelling blasting crack initiation and propagation in rock masses
    Yongjun Zhang
    Meng Xu
    Sijia Liu
    Fei Liu
    Qingsong Wang
    International Journal of Coal Science & Technology, 2023, 10