Stability Near Hydrostatic Equilibrium to the 2D Boussinesq Equations Without Thermal Diffusion

被引:0
|
作者
Lizheng Tao
Jiahong Wu
Kun Zhao
Xiaoming Zheng
机构
[1] University of California,Department of Mathematics
[2] Oklahoma State University,Department of Mathematics
[3] Tulane University,Department of Mathematics
[4] Central Michigan University,Department of Mathematics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This paper furthers our studies on the stability problem for perturbations near hydrostatic equilibrium of the 2D Boussinesq equations without thermal diffusion and solves some of the problems left open in Doering et al. (Physica D 376(377):144–159, 2018). We focus on the periodic domain to avoid the complications due to the boundary. We present several results at two levels: the linear stability and the nonlinear stability levels. Our linear stability results state that the velocity field u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} associated with any initial perturbation converges uniformly to 0 and the temperature θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} converges to an explicit function depending only on y as t tends to infinity. In addition, we obtain an explicit algebraic convergence rate for the velocity field in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-sense. Our nonlinear stability results state that any initial velocity small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} and any initial temperature small in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} lead to a stable solution of the full nonlinear perturbation equations in large time. Furthermore, we show that the temperature is eventually stratified and converges to a function depending only on y if we know it admits a certain uniform-in-time bound. An explicit decay rate for the velocity in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} is also ensured if we make assumption on the high-order norms of u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {u}$$\end{document} and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}.
引用
收藏
页码:585 / 630
页数:45
相关论文
共 50 条
  • [1] Stability Near Hydrostatic Equilibrium to the 2D Boussinesq Equations Without Thermal Diffusion
    Tao, Lizheng
    Wu, Jiahong
    Zhao, Kun
    Zheng, Xiaoming
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (02) : 585 - 630
  • [2] STABILITY OF HYDROSTATIC EQUILIBRIUM TO THE 2D FRACTIONAL BOUSSINESQ EQUATIONS
    Ma, Liangliang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (02): : 863 - 882
  • [3] Note on global stability of 2D anisotropic Boussinesq equations near the hydrostatic equilibrium
    Qiu, Hua
    Wang, Xia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
  • [4] Stability of hydrostatic equilibrium of the 2D Boussinesq-MHD equations without magnetic diffusion in two kinds of periodic domains
    Niu, Dongjuan
    Wu, Huiru
    Xu, Pan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [5] Stability and Large Time Behavior of the 2D Boussinesq Equations with Mixed Partial Dissipation Near Hydrostatic Equilibrium
    Chen, Dongxiang
    Liu, Qifeng
    ACTA APPLICANDAE MATHEMATICAE, 2022, 181 (01)
  • [6] Global well-posedness and stability of the 2D Boussinesq equations with partial dissipation near a hydrostatic equilibrium
    Kang, Kyungkeun
    Lee, Jihoon
    Nguyen, Dinh Duong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 393 : 1 - 57
  • [7] Stability and Large Time Behavior of the 2D Boussinesq Equations with Mixed Partial Dissipation Near Hydrostatic Equilibrium
    Dongxiang Chen
    Qifeng Liu
    Acta Applicandae Mathematicae, 2022, 181
  • [8] Asymptotic stability of the 2D Boussinesq equations without thermal conduction
    Dong, Lihua
    Sun, Yongzhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 337 : 507 - 540
  • [9] Stability of hydrostatic equilibrium to the 2D Boussinesq systems with partial dissipation
    Ji, Ruihong
    Li, Dan
    Wei, Youhua
    Wu, Jiahong
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 392 - 397
  • [10] The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion
    Wu, Jiahong
    Xu, Xiaojing
    Ye, Zhuan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 115 : 187 - 217