Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti In Situ Composites

被引:0
|
作者
W. J. Lu
D. Zhang
R. J. Wu
H. Mori
机构
[1] Shanghai Jiao Tong University,State Key Laboratory of Metal Matrix Composites
[2] Osaka University,the Research Center for Ultra
关键词
Material Transaction; Differential Scanning Calorimeter; Solidification Path; Ternary Eutectic; Differential Scanning Calorimeter Curve;
D O I
暂无
中图分类号
学科分类号
摘要
A novel in situ process was developed to produce titanium matrix composites reinforced with TiB and TiC of different mole ratios in which traditional ingot metallurgy plus self-propagation hightemperature synthesis (SHS) reactions between Ti and B4C, graphite powder were used. Microstructures of (TiB+TiC)/Ti in situ composites were comprehensively characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Solidification paths were investigated using a differential scanning calorimeter (DSC). Results show that there is an apparent difference in morphologies of reinforcements. The reinforcements nucleate and grow from the melt in a way of dissolution precipitation. The different morphologies are related to their solidification paths and the particular crystal structure of the reinforcement. TiB grows along the [010] direction and forms short-fiber shape due to its B27 structure, whereas TiC with NaCl type structure grows in a dendritic, equiaxed, or near-equiaxed shape. The DSC results and analysis of the phase diagram yield three stages for the solidification paths of in situ synthesized titanium matrix composites: (1) primary phase, (2) monovariant binary eutectic, and (3) invariant ternary eutectic. The addition of graphite adjusts the solidification paths and forms more dendritic primary TiC. The addition of aluminum does not change the solidification paths. However, the reinforcements grow finer and lead to equiaxed or near-equiaxed TiC morphologies. The following consistent crystallographic relationships between TiB and titanium were observed by HRTEM, i.e., [010]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (100)TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (001)TiB//(0002)Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$10\bar 1$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$4\overline {22} 1$$ \end{document})Ti and [001]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0\bar 10$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (200)TiB//(0002)Ti. The formation of the preceding crystallographic relationships is related to the growth mechanism of TiB. It also helps to minimize the lattice strain at the interfaces between TiB and the titanium matrix.
引用
收藏
页码:3055 / 3063
页数:8
相关论文
共 50 条
  • [41] Microstructure and tribological behavior of in situ synthesized (TiB+TiC)/Ti6Al4V (TiB/TiC=1/1) composites
    Zheng, Bowen
    Dong, Fuyu
    Yuan, Xiaoguang
    Huang, Hongjun
    Zhang, Yue
    Zuo, Xiaojiao
    Luo, Liangshun
    Wang, Liang
    Su, Yanqing
    Li, Weidong
    Liaw, Peter K.
    Wang, Xuan
    TRIBOLOGY INTERNATIONAL, 2020, 145
  • [42] Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242 (TiB:TiC=1:1) composites prepared by common casting technique
    Lu, WJ
    Zhang, D
    Zhang, XN
    Wu, RJ
    Sakata, T
    Mori, H
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 311 (1-2): : 142 - 150
  • [43] Single step heat treatment for the development of beta titanium composites with in-situ TiB and TiC reinforcement
    Rielli, Vitor V.
    Amigo-Borras, Vicente
    Contieri, Rodrigo J.
    MATERIALS CHARACTERIZATION, 2020, 163
  • [44] Preparation and characterization of melt-processed polycarbonate/multiwalled carbon nanotube composites
    Wu, Tzong-Ming
    Chen, Erh-Chiang
    Lin, Yen-Wen
    Chiang, Ming-Feng
    Chang, Gwo-Yang
    POLYMER ENGINEERING AND SCIENCE, 2008, 48 (07): : 1369 - 1375
  • [45] Melt-Processed Graphite-Polypropylene Composites for EMI Shielding Applications
    Kaushal, Ashish
    Singh, Vishal
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (09) : 5293 - 5301
  • [46] Evolution of microstructure and phases in in situ processed Ti-TiB composites containing high volume fractions of TiB whiskers
    Sahay, SS
    Ravichandran, KS
    Atri, R
    Chen, B
    Rubin, J
    JOURNAL OF MATERIALS RESEARCH, 1999, 14 (11) : 4214 - 4223
  • [47] Densification and compressive strength ofin-situ processed Ti/TiB composites by powder metallurgy
    H. W. Jeong
    S. J. Kim
    Y. T. Hyun
    Y. T. Lee
    Metals and Materials International, 2002, 8 : 25 - 35
  • [48] Synthesis and Characterization of Ti/(TiB plus TiC) Hybrid in-situ Composites by Spark Plasma Sintering
    Balaji, V. S.
    Kumaran, S.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2013, 66 (04) : 339 - 341
  • [49] Microstructure of in-situ synthesized (TiB plus TiC)/Ti composites prepared by hot-pressing
    Zheng, ZZ
    Geng, L
    Wang, HL
    Zhou, WM
    Xu, HY
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2003, 19 : 101 - 102
  • [50] Oxidation behavior of in situ synthesized (TiC + TiB+Nd2O3)/Ti composites
    Yang, Z. F.
    Lu, W. J.
    Qin, J. N.
    Zhang, D.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 472 (1-2): : 187 - 192