Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti In Situ Composites

被引:0
|
作者
W. J. Lu
D. Zhang
R. J. Wu
H. Mori
机构
[1] Shanghai Jiao Tong University,State Key Laboratory of Metal Matrix Composites
[2] Osaka University,the Research Center for Ultra
关键词
Material Transaction; Differential Scanning Calorimeter; Solidification Path; Ternary Eutectic; Differential Scanning Calorimeter Curve;
D O I
暂无
中图分类号
学科分类号
摘要
A novel in situ process was developed to produce titanium matrix composites reinforced with TiB and TiC of different mole ratios in which traditional ingot metallurgy plus self-propagation hightemperature synthesis (SHS) reactions between Ti and B4C, graphite powder were used. Microstructures of (TiB+TiC)/Ti in situ composites were comprehensively characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Solidification paths were investigated using a differential scanning calorimeter (DSC). Results show that there is an apparent difference in morphologies of reinforcements. The reinforcements nucleate and grow from the melt in a way of dissolution precipitation. The different morphologies are related to their solidification paths and the particular crystal structure of the reinforcement. TiB grows along the [010] direction and forms short-fiber shape due to its B27 structure, whereas TiC with NaCl type structure grows in a dendritic, equiaxed, or near-equiaxed shape. The DSC results and analysis of the phase diagram yield three stages for the solidification paths of in situ synthesized titanium matrix composites: (1) primary phase, (2) monovariant binary eutectic, and (3) invariant ternary eutectic. The addition of graphite adjusts the solidification paths and forms more dendritic primary TiC. The addition of aluminum does not change the solidification paths. However, the reinforcements grow finer and lead to equiaxed or near-equiaxed TiC morphologies. The following consistent crystallographic relationships between TiB and titanium were observed by HRTEM, i.e., [010]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (100)TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (001)TiB//(0002)Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$10\bar 1$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$4\overline {22} 1$$ \end{document})Ti and [001]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0\bar 10$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (200)TiB//(0002)Ti. The formation of the preceding crystallographic relationships is related to the growth mechanism of TiB. It also helps to minimize the lattice strain at the interfaces between TiB and the titanium matrix.
引用
收藏
页码:3055 / 3063
页数:8
相关论文
共 50 条
  • [21] Growth mechanism of reinforcements in in-situ synthesized (TiB plus TiC)/Ti composites
    Lü, WJ
    Zhang, D
    Zhang, XN
    Guo, SL
    Wu, RJ
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2001, 11 (01) : 67 - 71
  • [22] Growth mechanism of reinforcements in in-situ synthesized (TiB+TiC)/Ti composites
    吕维洁
    张荻
    张小农
    郭淑玲
    吴人洁
    Transactions of Nonferrous Metals Society of China, 2001, (01) : 67 - 71
  • [23] Oxidation behavior of in situ synthesized (TiB plus TiC)/Ti-Al composites
    Qin, YeXia
    Zhang, Di
    Lu, WeiJie
    Pan, Wei
    MATERIALS LETTERS, 2006, 60 (19) : 2339 - 2345
  • [24] In-situ synthesis TiC+TiB/Ti composites by spark plasma sintering
    Wang Pengbol
    Yang Guanjun
    Mao Xiaonan
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 (03) : 484 - 488
  • [25] Temperature dependence of morphology of TiC reinforcement in in situ Ti-6Al/TiC composites
    Zhang, EL
    Jin, YX
    Zeng, SY
    Zhu, ZJ
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (11) : 1063 - 1065
  • [26] Characterization of triplet Ti-TiB-TiC composites: Comparison of in-situ formation and ex-situ addition of TiC
    Fattahi, Mehdi
    Delbari, Seyed Ali
    Namini, Abbas Sabahi
    Ahmadi, Zohre
    Azadbeh, Maziyar
    Asl, Mehdi Shahedi
    CERAMICS INTERNATIONAL, 2020, 46 (08) : 11726 - 11734
  • [27] Melt-processed polyaniline nanofibers/LDPE/EAA conducting composites
    Su, Chang
    Wang, Gengchao
    Huang, Farong
    Li, Xingwei
    POLYMER COMPOSITES, 2008, 29 (10) : 1177 - 1182
  • [28] HREM study of TiB/Ti interfaces in a Ti-TiB-TiC in situ composite
    Lu, WJ
    Zhang, D
    Zhang, XN
    Wu, RJ
    Sakata, T
    Mori, H
    SCRIPTA MATERIALIA, 2001, 44 (07) : 1069 - 1075
  • [29] Microstructural Evolutions of In-situ TiB Whisker Reinforcement during Laser Welding TiB/Ti Composites
    Mao Jianwei
    Huang Guangfa
    Wang Liqiang
    Han Yuanfei
    Lu Weijie
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 : 112 - 117
  • [30] THE YOUNG MODULI OF IN-SITU TI/TIB COMPOSITES OBTAINED BY RAPID SOLIDIFICATION PROCESSING
    FAN, Z
    MIODOWNIK, AP
    CHANDRASEKARAN, L
    WARDCLOSE, M
    JOURNAL OF MATERIALS SCIENCE, 1994, 29 (04) : 1127 - 1134