Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti In Situ Composites

被引:0
|
作者
W. J. Lu
D. Zhang
R. J. Wu
H. Mori
机构
[1] Shanghai Jiao Tong University,State Key Laboratory of Metal Matrix Composites
[2] Osaka University,the Research Center for Ultra
关键词
Material Transaction; Differential Scanning Calorimeter; Solidification Path; Ternary Eutectic; Differential Scanning Calorimeter Curve;
D O I
暂无
中图分类号
学科分类号
摘要
A novel in situ process was developed to produce titanium matrix composites reinforced with TiB and TiC of different mole ratios in which traditional ingot metallurgy plus self-propagation hightemperature synthesis (SHS) reactions between Ti and B4C, graphite powder were used. Microstructures of (TiB+TiC)/Ti in situ composites were comprehensively characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Solidification paths were investigated using a differential scanning calorimeter (DSC). Results show that there is an apparent difference in morphologies of reinforcements. The reinforcements nucleate and grow from the melt in a way of dissolution precipitation. The different morphologies are related to their solidification paths and the particular crystal structure of the reinforcement. TiB grows along the [010] direction and forms short-fiber shape due to its B27 structure, whereas TiC with NaCl type structure grows in a dendritic, equiaxed, or near-equiaxed shape. The DSC results and analysis of the phase diagram yield three stages for the solidification paths of in situ synthesized titanium matrix composites: (1) primary phase, (2) monovariant binary eutectic, and (3) invariant ternary eutectic. The addition of graphite adjusts the solidification paths and forms more dendritic primary TiC. The addition of aluminum does not change the solidification paths. However, the reinforcements grow finer and lead to equiaxed or near-equiaxed TiC morphologies. The following consistent crystallographic relationships between TiB and titanium were observed by HRTEM, i.e., [010]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (100)TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (001)TiB//(0002)Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$10\bar 1$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$4\overline {22} 1$$ \end{document})Ti and [001]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0\bar 10$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (200)TiB//(0002)Ti. The formation of the preceding crystallographic relationships is related to the growth mechanism of TiB. It also helps to minimize the lattice strain at the interfaces between TiB and the titanium matrix.
引用
收藏
页码:3055 / 3063
页数:8
相关论文
共 50 条
  • [31] Densification and compressive strength of in-situ processed Ti/TiB composites by powder metallurgy
    Jeong, HW
    Kim, SJ
    Hyun, YT
    Lee, YT
    METALS AND MATERIALS INTERNATIONAL, 2002, 8 (01): : 25 - 35
  • [32] Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers
    S. S. Sahay
    K. S. Ravichandran
    R. Atri
    B. Chen
    J. Rubin
    Journal of Materials Research, 1999, 14 : 4214 - 4223
  • [33] Oxidation Behavior of In Situ-Synthesized (TiB+TiC)/Ti6242 Composites
    YeXia Qin
    Di Zhang
    WeiJie Lu
    Wei Pan
    Oxidation of Metals, 2006, 66 : 253 - 268
  • [34] Oxidation behavior of in situ-synthesized (TiB+TiC)/Ti6242 composites
    Qin, YeXia
    Zhang, Di
    Lu, WeiJie
    Pan, Wei
    OXIDATION OF METALS, 2006, 66 (5-6): : 253 - 268
  • [35] Effect of forging temperature on microstructure and mechanical properties of in situ (TiB plus TiC)/Ti composites
    Ma, Feng-cang
    Lu, Wei-jie
    Qin, Ji-ning
    Zhang, Di
    MATERIALS TRANSACTIONS, 2006, 47 (07) : 1750 - 1754
  • [36] The effect of graphite on mechanical properties of in situ synthesized (TiB plus TiC)/Ti matrix composites
    Lü, WJ
    Zhang, XN
    Zhang, D
    Wu, RJ
    Bian, YJ
    Fang, PW
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2000, 19 (07) : 591 - 593
  • [37] Synthesis and Characterization of Ti/(TiB + TiC) Hybrid in-situ Composites by Spark Plasma Sintering
    V. S. Balaji
    S. Kumaran
    Transactions of the Indian Institute of Metals, 2013, 66 : 339 - 341
  • [38] Dry sliding wear behavior of TiB/Ti and TiC/Ti composites
    Izui, Hiroshi
    Toen, Kazuhiro
    Kamegawa, Shoji
    Komiya, Yoshiki
    MECHANICAL ENGINEERING JOURNAL, 2018, 5 (04):
  • [39] Mechanical behavior of in-situ Ti/TiB composites containing bimodal reinforcement scales
    Philliber, JA
    Dary, FC
    Zok, FW
    Levi, CG
    PROCESSING, PROPERTIES, AND APPLICATIONS OF CAST METAL MATRIX COMPOSITES, 1996, : 55 - 66
  • [40] Melt-Processed Graphite-Polypropylene Composites for EMI Shielding Applications
    Ashish Kaushal
    Vishal Singh
    Journal of Electronic Materials, 2020, 49 : 5293 - 5301