Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti In Situ Composites

被引:0
|
作者
W. J. Lu
D. Zhang
R. J. Wu
H. Mori
机构
[1] Shanghai Jiao Tong University,State Key Laboratory of Metal Matrix Composites
[2] Osaka University,the Research Center for Ultra
关键词
Material Transaction; Differential Scanning Calorimeter; Solidification Path; Ternary Eutectic; Differential Scanning Calorimeter Curve;
D O I
暂无
中图分类号
学科分类号
摘要
A novel in situ process was developed to produce titanium matrix composites reinforced with TiB and TiC of different mole ratios in which traditional ingot metallurgy plus self-propagation hightemperature synthesis (SHS) reactions between Ti and B4C, graphite powder were used. Microstructures of (TiB+TiC)/Ti in situ composites were comprehensively characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). Solidification paths were investigated using a differential scanning calorimeter (DSC). Results show that there is an apparent difference in morphologies of reinforcements. The reinforcements nucleate and grow from the melt in a way of dissolution precipitation. The different morphologies are related to their solidification paths and the particular crystal structure of the reinforcement. TiB grows along the [010] direction and forms short-fiber shape due to its B27 structure, whereas TiC with NaCl type structure grows in a dendritic, equiaxed, or near-equiaxed shape. The DSC results and analysis of the phase diagram yield three stages for the solidification paths of in situ synthesized titanium matrix composites: (1) primary phase, (2) monovariant binary eutectic, and (3) invariant ternary eutectic. The addition of graphite adjusts the solidification paths and forms more dendritic primary TiC. The addition of aluminum does not change the solidification paths. However, the reinforcements grow finer and lead to equiaxed or near-equiaxed TiC morphologies. The following consistent crystallographic relationships between TiB and titanium were observed by HRTEM, i.e., [010]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (100)TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (001)TiB//(0002)Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$10\bar 1$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$4\overline {22} 1$$ \end{document})Ti and [001]TiB//[\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$01\bar 10$$ \end{document}]Ti, (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0\bar 10$$ \end{document})TiB//(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar 2110$$ \end{document})Ti, (200)TiB//(0002)Ti. The formation of the preceding crystallographic relationships is related to the growth mechanism of TiB. It also helps to minimize the lattice strain at the interfaces between TiB and the titanium matrix.
引用
收藏
页码:3055 / 3063
页数:8
相关论文
共 50 条
  • [1] Solidification paths and reinforcement morphologies in melt-processed (TiB + TiC)/Ti in situ composites
    Lu, WJ
    Zhang, D
    Wu, RJ
    Mori, H
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (09): : 3055 - 3063
  • [2] Solidification paths and carbide morphologies in melt-processed MoSi2-SiC In Situ composites
    Daniel J. Tilly
    Jan P. A. Löfvander
    Carlos G. Levi
    Metallurgical and Materials Transactions A, 1997, 28 : 1889 - 1900
  • [3] Solidification paths and carbide morphologies in melt-processed MoSi2-SiC in situ composites
    Tilly, DJ
    Lofvander, JPA
    Levi, CG
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1997, 28 (09): : 1889 - 1900
  • [4] Growth mechanism of reinforcement in in situ processed TiC/Ti composites
    Stt. Key Lab. Metal Matrix Compos., Shanghai Jiaotong University, Shanghai 200030, China
    不详
    Jinshu Xuebao, 5 (536-540):
  • [5] In situ technique for synthesizing (TiB plus TiC)/Ti composites
    Zhang, XN
    Lü, WJ
    Zhang, D
    Wu, RJ
    Bian, YJ
    Fang, PW
    SCRIPTA MATERIALIA, 1999, 41 (01) : 39 - 46
  • [6] MELT-PROCESSED NI3AL MATRIX COMPOSITES REINFORCED WITH TIC PARTICLES
    SEN, S
    STEFANESCU, DM
    DHINDAW, BK
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1994, 25 (11): : 2525 - 2534
  • [7] Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot processing
    Radhakrishna Bhat, B.V.
    Subramanyam, J.
    Bhanu Prasad, V.V.
    Materials Science and Engineering: A, 2002, 325 (1-2) : 126 - 130
  • [8] Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing
    Bhat, BVR
    Subramanyam, J
    Prasad, VVB
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 325 (1-2): : 126 - 130
  • [9] Effect of volume fraction of reinforcement on room temperature tensile property of in situ (TiB plus TiC)/Ti matrix composites
    Wang, MM
    Lu, WJ
    Qin, JN
    Ma, FC
    Lu, JQ
    Zhang, D
    MATERIALS & DESIGN, 2006, 27 (06): : 494 - 498
  • [10] Growth mechanism of reinforcements in in-situ synthesized (TiB + TiC)/Ti composites
    Lu, W.J.
    Zhang, D.
    Zhang, X.N.
    Guo, S.L.
    Wu, R.J.
    Transactions of Nonferrous Metals Society of China (English Edition), 2001, 11 (01): : 67 - 71