Chromatic number and subtrees of graphs

被引:0
|
作者
Baogang Xu
Yingli Zhang
机构
[1] Nanjing Normal University,Institute of Mathematics, School of Mathematical Sciences
来源
Frontiers of Mathematics in China | 2017年 / 12卷
关键词
Chromatic number; clique number; induced tree; subdivision; 05C15; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and H be two graphs. We say that G induces H if G has an induced subgraph isomorphic to H: A. Gyárfás and D. Sumner, independently, conjectured that, for every tree T. there exists a function fT; called binding function, depending only on T with the property that every graph G with chromatic number fT(ω(G)) induces T. A. Gyárfás, E. Szemerédi and Z. Tuza confirmed the conjecture for all trees of radius two on triangle-free graphs, and H. Kierstead and S. Penrice generalized the approach and the conclusion of A. Gyárfás et al. onto general graphs. A. Scott proved an interesting topological version of this conjecture asserting that for every integer k and every tree T of radius r, every graph G with ω(G) ⩽ k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(14r-1(r - 1)!) times. We extend the approach of A. Gyárfás and present a binding function for trees obtained by identifying one end of a path and the center of a star. We also improve A. Scott's upper bound by modifying his subtree structure and partition technique, and show that for every integer k and every tree T of radius r, every graph with ω(G) ⩽ k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(6r−2) times.
引用
收藏
页码:441 / 457
页数:16
相关论文
共 50 条
  • [21] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [22] On the strong chromatic number of graphs
    Axenovich, Maria
    Martin, Ryan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2006, 20 (03) : 741 - 747
  • [23] On the chromatic number of tree graphs
    Estivill-Castro, V
    Noy, M
    Urrutia, J
    DISCRETE MATHEMATICS, 2000, 223 (1-3) : 363 - 366
  • [24] The chromatic number of oriented graphs
    Sopena, E
    JOURNAL OF GRAPH THEORY, 1997, 25 (03) : 191 - 205
  • [25] CHROMATIC NUMBER OF SKEW GRAPHS
    PAHLINGS, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (03) : 303 - 306
  • [26] COMPLEMENTARY GRAPHS AND THE CHROMATIC NUMBER
    Starr, Colin L.
    Turner, Galen E., III
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2008, 20 (01) : 19 - 26
  • [27] On Indicated Chromatic Number of Graphs
    Raj, S. Francis
    Raj, R. Pandiya
    Patil, H. P.
    GRAPHS AND COMBINATORICS, 2017, 33 (01) : 203 - 219
  • [28] Chromatic Number and Hamiltonicity of Graphs
    Li, Rao
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2020, 113 : 253 - 257
  • [29] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [30] On the chromatic number of disk graphs
    Malesinska, E
    Piskorz, S
    Weissenfels, G
    NETWORKS, 1998, 32 (01) : 13 - 22