Chromatic number and subtrees of graphs

被引:0
|
作者
Baogang Xu
Yingli Zhang
机构
[1] Nanjing Normal University,Institute of Mathematics, School of Mathematical Sciences
来源
Frontiers of Mathematics in China | 2017年 / 12卷
关键词
Chromatic number; clique number; induced tree; subdivision; 05C15; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and H be two graphs. We say that G induces H if G has an induced subgraph isomorphic to H: A. Gyárfás and D. Sumner, independently, conjectured that, for every tree T. there exists a function fT; called binding function, depending only on T with the property that every graph G with chromatic number fT(ω(G)) induces T. A. Gyárfás, E. Szemerédi and Z. Tuza confirmed the conjecture for all trees of radius two on triangle-free graphs, and H. Kierstead and S. Penrice generalized the approach and the conclusion of A. Gyárfás et al. onto general graphs. A. Scott proved an interesting topological version of this conjecture asserting that for every integer k and every tree T of radius r, every graph G with ω(G) ⩽ k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(14r-1(r - 1)!) times. We extend the approach of A. Gyárfás and present a binding function for trees obtained by identifying one end of a path and the center of a star. We also improve A. Scott's upper bound by modifying his subtree structure and partition technique, and show that for every integer k and every tree T of radius r, every graph with ω(G) ⩽ k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(6r−2) times.
引用
收藏
页码:441 / 457
页数:16
相关论文
共 50 条
  • [11] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    Combinatorica, 1999, 19 : 139 - 149
  • [12] On the difference between chromatic number and dynamic chromatic number of graphs
    Ahadi, A.
    Akbari, S.
    Dehghan, A.
    Ghanbari, M.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2579 - 2583
  • [13] On group chromatic number of graphs
    Lai, HJ
    Li, XW
    GRAPHS AND COMBINATORICS, 2005, 21 (04) : 469 - 474
  • [14] On incompactness for chromatic number of graphs
    Shelah, S.
    ACTA MATHEMATICA HUNGARICA, 2013, 139 (04) : 363 - 371
  • [15] On the chromatic number of Toeplitz graphs
    Nicoloso, Sara
    Pietropaoli, Ugo
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 286 - 296
  • [16] The Robust Chromatic Number of Graphs
    Bacso, Gabor
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [17] MONOTONE CHROMATIC NUMBER OF GRAPHS
    Saleh, Anwar
    Muthana, Najat
    Al-Shammakh, Wafa
    Alashwali, Hanaa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06): : 1108 - 1122
  • [18] Hat chromatic number of graphs
    Bosek, Bartlomiej
    Dudek, Andrzej
    Farnik, Michal
    Grytczuk, Jaroslaw
    Mazur, Przemyslaw
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [19] On Indicated Chromatic Number of Graphs
    S. Francis Raj
    R. Pandiya Raj
    H. P. Patil
    Graphs and Combinatorics, 2017, 33 : 203 - 219
  • [20] On the harmonious chromatic number of graphs
    Araujo-Pardo, Gabriela
    Montellano-Ballesteros, Juan Jose
    Olsen, Mika
    Rubio-Montiel, Christian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):