Dynamic Averaging Load Balancing on Cycles

被引:0
|
作者
Dan Alistarh
Giorgi Nadiradze
Amirmojtaba Sabour
机构
[1] IST Austria,
来源
Algorithmica | 2022年 / 84卷
关键词
Algorithms; Load balancing;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 0$$\end{document}, a random edge is chosen, one unit of load is created, and placed at one of the endpoints. In the same step, assuming that loads are arbitrarily divisible, the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Peres et al. (Random Struct Algorithms 47(4):760–775, 2015) studied the variant of this process, where the unit of load is placed in the least loaded endpoint of the chosen edge, and the averaging is not performed. In the case of dynamic load balancing on the cycle of length n the only known upper bound on the expected gap is of order O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}( n \log n )$$\end{document}, following from the majorization argument due to the same work. In this paper, we leverage the power of averaging and provide an improved upper bound of O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} ( \sqrt{n} \log n )$$\end{document}. We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any k≤n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le n/2$$\end{document}. We complement this with a “gap covering” argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We also show that our analysis can be extended to the specific instance of Harary graphs. On the other hand, we prove that the expected second moment of the gap is lower bounded by Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n)$$\end{document}. Additionally, we provide experimental evidence that our upper bound on the gap is tight up to a logarithmic factor.
引用
收藏
页码:1007 / 1029
页数:22
相关论文
共 50 条
  • [41] Dynamic load balancing experiments in a grid
    Dobber, M
    Koole, G
    van der Mei, R
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE GRID, VOLS 1 AND 2, 2005, : 1063 - 1070
  • [42] Location dependent dynamic load balancing
    Yanmaz, E
    Tonguz, OK
    GLOBECOM '05: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6: DISCOVERY PAST AND FUTURE, 2005, : 587 - 591
  • [43] On the Stability of Dynamic Diffusion Load Balancing
    Petra Berenbrink
    Tom Friedetzky
    Russell Martin
    Algorithmica, 2008, 50 : 329 - 350
  • [44] Is there an optimum dynamic load balancing scheme?
    Yanmaz, E
    Tonguz, OK
    Rajkumar, R
    GLOBECOM '05: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6: DISCOVERY PAST AND FUTURE, 2005, : 598 - 602
  • [45] Improved strategies for dynamic load balancing
    Hui, CC
    Chanson, ST
    IEEE CONCURRENCY, 1999, 7 (03): : 58 - 67
  • [46] Improved strategies for dynamic load balancing
    Hui, Chi-Chung
    Chanson, Samuel T.
    IEEE Concurrency, 7 (03): : 58 - 67
  • [47] A practical approach to dynamic load balancing
    Watts, J
    Taylor, S
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1998, 9 (03) : 235 - 248
  • [48] Dynamic load balancing by random matchings
    Ghosh, B
    Muthukrishnan, S
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1996, 53 (03) : 357 - 370
  • [49] Communication locality preservation in dynamic load balancing
    Watts, J
    Taylor, S
    PROCEEDINGS OF THE HIGH-PERFORMANCE COMPUTING (HPC'98), 1998, : 186 - 190
  • [50] Load Balancing with Bounded Convergence in Dynamic Networks
    Dinitz, Michael
    Fineman, Jeremy
    Gilbert, Seth
    Newport, Calvin
    IEEE INFOCOM 2017 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2017,