Dynamic Averaging Load Balancing on Cycles

被引:0
|
作者
Dan Alistarh
Giorgi Nadiradze
Amirmojtaba Sabour
机构
[1] IST Austria,
来源
Algorithmica | 2022年 / 84卷
关键词
Algorithms; Load balancing;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 0$$\end{document}, a random edge is chosen, one unit of load is created, and placed at one of the endpoints. In the same step, assuming that loads are arbitrarily divisible, the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Peres et al. (Random Struct Algorithms 47(4):760–775, 2015) studied the variant of this process, where the unit of load is placed in the least loaded endpoint of the chosen edge, and the averaging is not performed. In the case of dynamic load balancing on the cycle of length n the only known upper bound on the expected gap is of order O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}( n \log n )$$\end{document}, following from the majorization argument due to the same work. In this paper, we leverage the power of averaging and provide an improved upper bound of O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} ( \sqrt{n} \log n )$$\end{document}. We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any k≤n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le n/2$$\end{document}. We complement this with a “gap covering” argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We also show that our analysis can be extended to the specific instance of Harary graphs. On the other hand, we prove that the expected second moment of the gap is lower bounded by Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n)$$\end{document}. Additionally, we provide experimental evidence that our upper bound on the gap is tight up to a logarithmic factor.
引用
收藏
页码:1007 / 1029
页数:22
相关论文
共 50 条
  • [31] Traveling token for dynamic load balancing
    Omari, T
    Hosseini, SH
    Vairavan, K
    THIRD IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS, PROCEEDINGS, 2004, : 329 - 332
  • [32] Dynamic load balancing in MPI jobs
    Utrera, Gladys
    Corbalan, Julita
    Labarta, Jesus
    HIGH-PERFORMANCE COMPUTING, 2008, 4759 : 117 - 129
  • [33] Migratable sockets for dynamic load balancing
    Bubak, M
    Zbik, D
    van Albada, D
    Iskra, K
    Sloot, P
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 2001, 2110 : 23 - 31
  • [34] New challenges in dynamic load balancing
    Devine, KD
    Boman, EG
    Heaphy, RT
    Hendrickson, BA
    Teresco, JD
    Faik, J
    Flaherty, JE
    Gervasio, LG
    APPLIED NUMERICAL MATHEMATICS, 2005, 52 (2-3) : 133 - 152
  • [35] Dynamic load balancing with group communication
    Dolev, Shlomi
    Segala, Roberto
    Shvartsman, Alexander
    THEORETICAL COMPUTER SCIENCE, 2006, 369 (1-3) : 348 - 360
  • [36] Dynamic load balancing for distributed search
    Huston, L
    Nizhner, A
    Pillai, P
    Sukthankar, R
    Steenkiste, P
    Zhang, J
    14th IEEE International Symposium on High Performance Distributed Computing, Proceedings, 2005, : 157 - 166
  • [37] A new metric for dynamic load balancing
    Berzins, M
    APPLIED MATHEMATICAL MODELLING, 2000, 25 (02) : 141 - 151
  • [38] Dynamic Load Balancing with Pair Potentials
    Papin, Jean-Charles
    Denoual, Christophe
    Colombet, Laurent
    Namyst, Raymond
    EURO-PAR 2014: PARALLEL PROCESSING WORKSHOPS, PT II, 2014, 8806 : 462 - 473
  • [39] Dynamic load balancing of SAMR applications
    Lan, ZL
    Taylor, VE
    ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 403 - 410
  • [40] Dynamic load balancing for multiple processors
    Kuo, Chin-Fu
    Yang, Tung-Wei
    Kuo, Tei-Wei
    12TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED AND REAL-TIME COMPUTING SYSTEMS AND APPLICATIONS, PROCEEDINGS, 2006, : 395 - +