Dynamic Averaging Load Balancing on Cycles

被引:0
|
作者
Dan Alistarh
Giorgi Nadiradze
Amirmojtaba Sabour
机构
[1] IST Austria,
来源
Algorithmica | 2022年 / 84卷
关键词
Algorithms; Load balancing;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following dynamic load-balancing process: given an underlying graph G with n nodes, in each step t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 0$$\end{document}, a random edge is chosen, one unit of load is created, and placed at one of the endpoints. In the same step, assuming that loads are arbitrarily divisible, the two nodes balance their loads by averaging them. We are interested in the expected gap between the minimum and maximum loads at nodes as the process progresses, and its dependence on n and on the graph structure. Peres et al. (Random Struct Algorithms 47(4):760–775, 2015) studied the variant of this process, where the unit of load is placed in the least loaded endpoint of the chosen edge, and the averaging is not performed. In the case of dynamic load balancing on the cycle of length n the only known upper bound on the expected gap is of order O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O}( n \log n )$$\end{document}, following from the majorization argument due to the same work. In this paper, we leverage the power of averaging and provide an improved upper bound of O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} ( \sqrt{n} \log n )$$\end{document}. We introduce a new potential analysis technique, which enables us to bound the difference in load between k-hop neighbors on the cycle, for any k≤n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \le n/2$$\end{document}. We complement this with a “gap covering” argument, which bounds the maximum value of the gap by bounding its value across all possible subsets of a certain structure, and recursively bounding the gaps within each subset. We also show that our analysis can be extended to the specific instance of Harary graphs. On the other hand, we prove that the expected second moment of the gap is lower bounded by Ω(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (n)$$\end{document}. Additionally, we provide experimental evidence that our upper bound on the gap is tight up to a logarithmic factor.
引用
收藏
页码:1007 / 1029
页数:22
相关论文
共 50 条
  • [21] COOPERATIVE DISTRIBUTED DYNAMIC LOAD BALANCING
    SHEN, S
    ACTA INFORMATICA, 1988, 25 (06) : 663 - 676
  • [22] Dynamic Load balancing alogorithm in cloud
    Hao Shuixia
    Shen Dandan
    IEEE 12TH INT CONF UBIQUITOUS INTELLIGENCE & COMP/IEEE 12TH INT CONF ADV & TRUSTED COMP/IEEE 15TH INT CONF SCALABLE COMP & COMMUN/IEEE INT CONF CLOUD & BIG DATA COMP/IEEE INT CONF INTERNET PEOPLE AND ASSOCIATED SYMPOSIA/WORKSHOPS, 2015, : 956 - 961
  • [23] Fully-Dynamic Load Balancing
    Foussoul, Ayoub
    Goya, Vineet
    Kumar, Amit
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2024, 2024, 14679 : 182 - 195
  • [24] ITERATIVE DYNAMIC LOAD BALANCING IN MULTICOMPUTERS
    XU, CZ
    LAU, FCM
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1994, 45 (07) : 786 - 796
  • [25] An efficient dynamic load balancing algorithm
    Nikos D. Lagaros
    Computational Mechanics, 2014, 53 : 59 - 76
  • [26] Optimization methods for dynamic load balancing
    McWilliams, PJ
    Topping, BHV
    ADVANCES IN COMPUTATIONAL MECHANICS WITH PARALLEL AND DISTRIBUTED PROCESSING, 1997, : 129 - 135
  • [27] Dynamic load balancing with flexible workers
    Ahn, Hyun-Soo
    Righter, Rhonda
    ADVANCES IN APPLIED PROBABILITY, 2006, 38 (03) : 621 - 642
  • [28] Multimodal Dynamic Freight Load Balancing
    Abadi, Afshin
    Ioannou, Petros A.
    Dessouky, Maged M.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (02) : 356 - 366
  • [29] An Adaptive Dynamic Load Balancing Model
    Zhao T.-L.
    Qiao J.-Z.
    Lin S.-K.
    Wang Y.-H.
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2019, 40 (06): : 813 - 818
  • [30] Dynamic load balancing in computational mechanics
    Hendrickson, B
    Devine, K
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) : 485 - 500