Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151–169, 2009), Gudnason (Nucl Phys B 840:160–185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources:
(1)τ-Δu1=eu1-τeu2-4Nπδ0,-Δu2=eu2-τeu1,β1=12π∫R2eu1andβ2=12π∫R2eu2,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(1)_\tau \begin{cases}-\Delta u_1 = e^{u_1} - \tau e^{u_2} - 4N \pi \, \delta_0,\\-\Delta u_2 = e^{u_2} - \tau e^{u_1},\\ \beta_1 = \frac{1}{2\pi}
\int_{\mathbb{R}^{2}} e^{u_1}
\, {\rm and }
\, \beta_2 = \frac{1}{2\pi}
\int_{\mathbb{R}^{2}} e^{u_2},\end{cases}$$\end{document}with τ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\tau > 0}$$\end{document} and N>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${N > 0}$$\end{document}.