On Non-Topological Solutions for Planar Liouville Systems of Toda-Type

被引:0
|
作者
Arkady Poliakovsky
Gabriella Tarantello
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics
[2] Università degli Studi di Roma “Tor Vergata”,Dipartimento di Matematica
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151–169, 2009), Gudnason (Nucl Phys B 840:160–185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources: (1)τ-Δu1=eu1-τeu2-4Nπδ0,-Δu2=eu2-τeu1,β1=12π∫R2eu1andβ2=12π∫R2eu2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1)_\tau \begin{cases}-\Delta u_1 = e^{u_1} - \tau e^{u_2} - 4N \pi \, \delta_0,\\-\Delta u_2 = e^{u_2} - \tau e^{u_1},\\ \beta_1 = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} e^{u_1} \, {\rm and } \, \beta_2 = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} e^{u_2},\end{cases}$$\end{document}with τ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau > 0}$$\end{document} and N>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N > 0}$$\end{document}.
引用
收藏
页码:223 / 270
页数:47
相关论文
共 50 条
  • [12] INTEGRATION OF NON-ABELIAN TODA-TYPE CHAINS
    GEKHTMAN, MI
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1990, 24 (03) : 231 - 233
  • [13] TOPOLOGICAL AND NON-TOPOLOGICAL SOLITON SOLUTIONS OF THE BRETHERTON EQUATION
    Triki, Houria
    Yildirim, Ahmet
    Hayat, T.
    Aldossar, Omar M.
    Biswas, Anjan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2012, 13 (02): : 103 - 108
  • [14] Existence of a Topological Subspace in Apparently Non-topological Systems
    Xiao, Yixin
    Zhang, Zhao-Qing
    Chan, Che Ting
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 973 - 973
  • [15] Bi-infinite Solutions for KdV- and Toda-Type Discrete Integrable Systems Based on Path Encodings
    David A. Croydon
    Makiko Sasada
    Satoshi Tsujimoto
    Mathematical Physics, Analysis and Geometry, 2022, 25
  • [16] A Numerical Study of the 3-Periodic Wave Solutions to Toda-Type Equations
    Thang, Yingnan
    Hu, Xingbiao
    He, Yi
    Sun, Jianqing
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (02) : 579 - 598
  • [17] Bi-infinite Solutions for KdV- and Toda-Type Discrete Integrable Systems Based on Path Encodings
    Croydon, David A.
    Sasada, Makiko
    Tsujimoto, Satoshi
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2022, 25 (04)
  • [18] NON-ABELIAN TODA-TYPE EQUATIONS AND MATRIX VALUED ORTHOGONAL POLYNOMIALS
    Dean, Alfredo
    Morey, Lucia
    Roman, Pablo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (04) : 1613 - 1632
  • [19] A factorization for Z x Z-matrices yielding solutions of Toda-type hierarchies
    Helminck, GF
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 : 206 - 222
  • [20] A new type of non-topological bubbling solutions to a competitive Chern-Simons model
    Chen, Zhijie
    Lin, Chang-Shou
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (01) : 65 - 108