On Non-Topological Solutions for Planar Liouville Systems of Toda-Type

被引:0
|
作者
Arkady Poliakovsky
Gabriella Tarantello
机构
[1] Ben-Gurion University of the Negev,Department of Mathematics
[2] Università degli Studi di Roma “Tor Vergata”,Dipartimento di Matematica
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151–169, 2009), Gudnason (Nucl Phys B 840:160–185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources: (1)τ-Δu1=eu1-τeu2-4Nπδ0,-Δu2=eu2-τeu1,β1=12π∫R2eu1andβ2=12π∫R2eu2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1)_\tau \begin{cases}-\Delta u_1 = e^{u_1} - \tau e^{u_2} - 4N \pi \, \delta_0,\\-\Delta u_2 = e^{u_2} - \tau e^{u_1},\\ \beta_1 = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} e^{u_1} \, {\rm and } \, \beta_2 = \frac{1}{2\pi} \int_{\mathbb{R}^{2}} e^{u_2},\end{cases}$$\end{document}with τ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau > 0}$$\end{document} and N>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${N > 0}$$\end{document}.
引用
收藏
页码:223 / 270
页数:47
相关论文
共 50 条
  • [21] Generalized gauge field theories with non-topological soliton solutions
    Diaz-Alonso, Joaquin
    Rubiera-Garcia, Diego
    PHYSICS LETTERS B, 2007, 657 (4-5) : 257 - 262
  • [22] Topological and non-topological soliton solutions to some time-fractional differential equations
    M MIRZAZADEH
    Pramana, 2015, 85 : 17 - 29
  • [23] Topological and non-topological soliton solutions to some time-fractional differential equations
    Mirzazadeh, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (01): : 17 - 29
  • [24] Singular and non-topological soliton solutions for nonlinear fractional differential equations
    Guner, Ozkan
    CHINESE PHYSICS B, 2015, 24 (10)
  • [25] A study on relativistic lagrangian field theories with non-topological soliton solutions
    Diaz-Alonso, J.
    Rubiera-Garcia, D.
    ANNALS OF PHYSICS, 2009, 324 (04) : 827 - 873
  • [26] NON-TOPOLOGICAL SOLUTIONS IN A GENERALIZED CHERN-SIMONS MODEL ON TORUS
    Lee, Youngae
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (04) : 1315 - 1330
  • [27] Singular and non-topological soliton solutions for nonlinear fractional differential equations
    Ozkan Guner
    Chinese Physics B, 2015, 24 (10) : 14 - 19
  • [28] Non-topological multivortex solutions to the self-dual Maxwell-Chern-Simons-Higgs systems
    Chae, D
    Imanuvilov, OY
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (01) : 87 - 118
  • [29] On non-topological solutions of the G2 Chern-Simons system
    Ao, Weiwei
    Lin, Chang-Shou
    Wei, Juncheng
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (04) : 717 - 752
  • [30] Transport of Massless Dirac Fermions in Non-topological Type Edge States
    Latyshev, Yu I.
    Orlov, A. P.
    Volkov, V. A.
    Enaldiev, V. V.
    Zagorodnev, I. V.
    Vyvenko, O. F.
    Petrov, Yu V.
    Monceau, P.
    SCIENTIFIC REPORTS, 2014, 4