Nonlinear Eigenvalues for a Quasilinear Elliptic System in Orlicz–Sobolev Spaces

被引:1
|
作者
Jorge Huentutripay
Raúl Manásevich
机构
[1] Universidad de los Lagos,Departamento de Ciencias Exactas
[2] Universidad de Chile,Departamento de Ingeniería Matemática, FCFM
关键词
Orlicz–Sobolev spaces; Nonlinear eigenvalue problems; Lagrange multiplier ruler; complementary system;
D O I
暂无
中图分类号
学科分类号
摘要
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\begin{array}{l}{ - \Delta _{\Phi _1 } u = \lambda (a_1 (x,u) + b(x)\gamma _1 (u)\Gamma_2 (v))\quad \text{in}\;\Omega ,} \\{ - \Delta _{\Phi _2 } v = \lambda (a_2 (x,v) + b(x)\Gamma _1 (u)\gamma_2 (v))\quad \hbox{in}\;\Omega ,} \\{u = v = 0\quad \hbox{on}\;\partial \Omega .} \\ \end{array} } \right.$$\end{document}We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C1.
引用
收藏
页码:901 / 929
页数:28
相关论文
共 50 条
  • [41] On Some Nonlinear Elliptic Problems with Large Monotonocity in Musielak-Orlicz-Sobolev Spaces
    Azraibi, Ouidad
    El Haji, Badr
    Mekkour, Mounir
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (03) : 332 - 349
  • [42] Existence of Solutions to a Semilinear Elliptic System through Orlicz-Sobolev Spaces
    Philippe Clément
    Ben de Pagter
    Guido Sweers
    François de Thélin
    Mediterranean Journal of Mathematics, 2004, 1 (3) : 241 - 267
  • [43] Capacity solution to a coupled system of parabolic–elliptic equations in Orlicz–Sobolev spaces
    H. Moussa
    F. Ortegón Gallego
    M. Rhoudaf
    Nonlinear Differential Equations and Applications NoDEA, 2018, 25
  • [44] Existence of a capacity solution to a nonlinear parabolic-elliptic coupled system in anisotropic Orlicz-Sobolev spaces
    Gallego, Francisco Ortegon
    Ouyahya, Hakima
    Rhoudaf, Mohamed
    RESULTS IN APPLIED MATHEMATICS, 2023, 18
  • [45] Quasilinear elliptic equations with slowly growing principal part and critical Orlicz-Sobolev nonlinear term
    Fukagai, Nobuyoshi
    Ito, Masayuki
    Narukawa, Kimiaki
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 73 - 106
  • [46] Existence of weak solutions for quasilinear elliptic systems in Orlicz spaces
    Azroul, Elhoussine
    Balaadich, Farah
    APPLICABLE ANALYSIS, 2019,
  • [47] RELATIONSHIP BETWEEN SOLUTIONS TO A QUASILINEAR ELLIPTIC EQUATION IN ORLICZ SPACES
    Fang, Fei
    Zhou, Zheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [48] Multiple solutions for a class of quasilinear problems in Orlicz-Sobolev spaces
    Ait-Mahiout, Karima
    Alves, Claudianor O.
    ASYMPTOTIC ANALYSIS, 2017, 104 (1-2) : 49 - 66
  • [49] Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces
    Santos, Jefferson A.
    Soares, Sergio H. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (02) : 1035 - 1053
  • [50] Existence results for some nonlinear elliptic equations with measure data in Orlicz-Sobolev spaces
    Dong, Ge
    Fang, Xiaochun
    BOUNDARY VALUE PROBLEMS, 2015,